Little q-Jacobi polynomials
Jump to navigation
Jump to search
In mathematics, the little q-Jacobi polynomials pn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Hahn (1949). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The little q-Jacobi polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by
Orthogonality
This section is empty. You can help by adding to it. (September 2011) |
Recurrence and difference relations
This section is empty. You can help by adding to it. (September 2011) |
Rodrigues formula
This section is empty. You can help by adding to it. (September 2011) |
Generating function
This section is empty. You can help by adding to it. (September 2011) |
Relation to other polynomials
This section is empty. You can help by adding to it. (September 2011) |
Gallery
The following are a set of animation plots for Little q-Jacobi polynomials, with varying q; three density plots of imaginary, real and modulus in complex space; three set of complex 3D plots of imaginary, real and modulus of the said polynomials.
References
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
- Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Little q-Jacobi polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248