Incomplete Bessel functions

From LaTeX CAS translator demo
Jump to navigation Jump to search

In mathematics, the incomplete Bessel functions are types of special functions which act as a type of extension from the complete-type of Bessel functions.

Definition

The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:

Jv1(z,w)Jv+1(z,w)=2zJv(z,w)
Yv1(z,w)Yv+1(z,w)=2zYv(z,w)
Iv1(z,w)+Iv+1(z,w)=2zIv(z,w)
Kv1(z,w)+Kv+1(z,w)=2zKv(z,w)
Hv1(1)(z,w)Hv+1(1)(z,w)=2zHv(1)(z,w)
Hv1(2)(z,w)Hv+1(2)(z,w)=2zHv(2)(z,w)

And the following suitable extension forms of delay differential equations from that of the complete-type Bessel functions:

Jv1(z,w)+Jv+1(z,w)=2vzJv(z,w)2tanhvwzwJv(z,w)
Yv1(z,w)+Yv+1(z,w)=2vzYv(z,w)2tanhvwzwYv(z,w)
Iv1(z,w)Iv+1(z,w)=2vzIv(z,w)2tanhvwzwIv(z,w)
Kv1(z,w)Kv+1(z,w)=2vzKv(z,w)+2tanhvwzwKv(z,w)
Hv1(1)(z,w)+Hv+1(1)(z,w)=2vzHv(1)(z,w)2tanhvwzwHv(1)(z,w)
Hv1(2)(z,w)+Hv+1(2)(z,w)=2vzHv(2)(z,w)2tanhvwzwHv(2)(z,w)

Where the new parameter w defines from the upper-incomplete-form and the lower-incomplete-form of modified Bessel function of the second kind:

Kv(z,w)=wezcoshtcoshvtdt
J(z,v,w)=0wezcoshtcoshvtdt

Properties

Jv(z,w)=Jv(z)+evπi2J(iz,v,w)evπi2J(iz,v,w)iπ
Yv(z,w)=Yv(z)+evπi2J(iz,v,w)+evπi2J(iz,v,w)π
Iv(z,w)=Iv(z,w) for integer v
Iv(z,w)Iv(z,w)=Iv(z)Iv(z)2sinvππJ(z,v,w)
Iv(z,w)=Iv(z)+J(z,v,w)evπiJ(z,v,w)iπ
Iv(z,w)=evπi2Jv(iz,w)
Kv(z,w)=Kv(z,w)
Kv(z,w)=π2Iv(z,w)Iv(z,w)sinvπ for non-integer v
Hv(1)(z,w)=Jv(z,w)+iYv(z,w)
Hv(2)(z,w)=Jv(z,w)iYv(z,w)
Hv(1)(z,w)=evπiHv(1)(z,w)
Hv(2)(z,w)=evπiHv(2)(z,w)
Hv(1)(z,w)=Jv(z,w)evπiJv(z,w)isinvπ=Yv(z,w)evπiYv(z,w)sinvπ for non-integer v
Hv(2)(z,w)=evπiJv(z,w)Jv(z,w)isinvπ=Yv(z,w)evπiYv(z,w)sinvπ for non-integer v

Differential equations

Kv(z,w) satisfies the inhomogeneous Bessel's differential equation

z2d2ydz2+zdydz(x2+v2)y=(vsinhvw+zcoshvwsinhw)ezcoshw

Both Jv(z,w) , Yv(z,w) , Hv(1)(z,w) and Hv(2)(z,w) satisfy the partial differential equation

z22yz2+zyz+(z2v2)y2yw2+2vtanhvwyw=0

Both Iv(z,w) and Kv(z,w) satisfy the partial differential equation

z22yz2+zyz(z2+v2)y2yw2+2vtanhvwyw=0

Integral representations

Base on the preliminary definitions above, one would derive directly the following integral forms of Jv(z,w) , Yv(z,w):

Jv(z,w)=Jv(z)+1πi(0wevπi2izcoshtcoshvtdt0weizcoshtvπi2coshvtdt)=Jv(z)+1πi(0wcos(zcoshtvπ2)coshvtdti0wsin(zcoshtvπ2)coshvtdt0wcos(zcoshtvπ2)coshvtdti0wsin(zcoshtvπ2)coshvtdt)=Jv(z)+1πi(2i0wsin(zcoshtvπ2)coshvtdt)=Jv(z)2π0wsin(zcoshtvπ2)coshvtdt
Yv(z,w)=Yv(z)+1π(0wevπi2izcoshtcoshvtdt+0weizcoshtvπi2coshvtdt)=Yv(z)+1π(0wcos(zcoshtvπ2)coshvtdti0wsin(zcoshtvπ2)coshvtdt+0wcos(zcoshtvπ2)coshvtdt+i0wsin(zcoshtvπ2)coshvtdt)=Yv(z)+2π0wcos(zcoshtvπ2)coshvtdt

With the Mehler–Sonine integral expressions of Jv(z)=2π0sin(zcoshtvπ2)coshvtdt and Yv(z)=2π0cos(zcoshtvπ2)coshvtdt mentioned in Digital Library of Mathematical Functions,[1]

we can further simplify to Jv(z,w)=2πwsin(zcoshtvπ2)coshvtdt and Yv(z,w)=2πwcos(zcoshtvπ2)coshvtdt , but the issue is not quite good since the convergence range will reduce greatly to |v|<1.

References

  1. Paris, R. B. (2010), "Bessel Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248

External links

applications (Springer, 1971). (https://www.springer.com/gp/book/9783642650239)