Gold 90
Jump to navigation
Jump to search
Q-Laguerre polynomials
- Gold ID
- 90
- Link
- https://sigir21.wmflabs.org/wiki/Q-Laguerre_polynomials#math.149.0
- Formula
- TeX Source
\displaystyle L_n^{(\alpha)}(x;q) = \frac{(q^{\alpha+1};q)_n}{(q;q)_n} {}_1\phi_1(q^{-n};q^{\alpha+1};q,-q^{n+\alpha+1}x)
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- |
Semantic LaTeX
- Translation
\qLaguerrepolyL{\alpha}{n}@{x}{q} = \frac{\qmultiPochhammersym{q^{\alpha+1}}{q}{n}}{\qmultiPochhammersym{q}{q}{n}} \qgenhyperphi{1}{1}@{q^{-n}}{q^{\alpha+1}}{q}{- q^{n+\alpha+1} x}
- Expected (Gold Entry)
\qLaguerrepolyL{\alpha}{n}@{x}{q} = \frac{\qmultiPochhammersym{q^{\alpha+1}}{q}{n}}{\qmultiPochhammersym{q}{q}{n}} \qgenhyperphi{1}{1}@{q^{-n}}{q^{\alpha+1}}{q}{- q^{n+\alpha+1} x}
Mathematica
- Translation
- Expected (Gold Entry)
L[n_, \[Alpha]_, x_, q_] := Divide[Product[QPochhammer[Part[{(q)^(\[Alpha]+ 1)},i],q,n],{i,1,Length[{(q)^(\[Alpha]+ 1)}]}],Product[QPochhammer[Part[{q},i],q,n],{i,1,Length[{q}]}]]*QHypergeometricPFQ[{(q)^(- n)},{(q)^(\[Alpha]+ 1)},q,- (q)^(n + \[Alpha]+ 1)* x]
Maple
- Translation
- Expected (Gold Entry)