Gold 77
Jump to navigation
Jump to search
Q-Hahn polynomials
- Gold ID
- 77
- Link
- https://sigir21.wmflabs.org/wiki/Q-Hahn_polynomials#math.129.0
- Formula
- TeX Source
Q_n(x;a,b,N;q)=\;_{3}\phi_2\left[\begin{matrix} q^-n & abq^n+1 & x \\ aq & q^-N \end{matrix} ; q,q \right]
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- |
Semantic LaTeX
- Translation
Q_n(x ; a , b , N ; q) =_{3} \phi_2 [\begin{matrix} q^-n & abq^n+1 & x \\ aq & q^-N \end{matrix} ; q , q]
- Expected (Gold Entry)
\qHahnpolyQ{n}@{x}{a}{b}{N}{q} = \qgenhyperphi{3}{2}@{q^-n , abq^n+1 , x}{aq , q^-N}{q}{q}
Mathematica
- Translation
- Expected (Gold Entry)
Q[n_, x_, a_, b_, N_, q_] := QHypergeometricPFQ[{(q)^(-)* n , a*b*(q)^(n)+ 1 , x},{a*q , (q)^(-)* N},q,q]
Maple
- Translation
- Expected (Gold Entry)