Gold 71

From LaTeX CAS translator demo
Jump to navigation Jump to search

Jacobi polynomials

Gold ID
71
Link
https://sigir21.wmflabs.org/wiki/Jacobi_polynomials#math.123.0
Formula
Pn(α,β)(z)=(α+1)nn!2F1(n,1+α+β+n;α+1;12(1z))
TeX Source
P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right)
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes Yes Yes

Semantic LaTeX

Translation
\JacobipolyP{\alpha}{\beta}{n}@{z} = \frac{\Pochhammersym{\alpha + 1}{n}}{n!} \genhyperF{2}{1}@{- n , 1 + \alpha + \beta + n}{\alpha + 1}{\tfrac{1}{2}(1 - z)}
Expected (Gold Entry)
\JacobipolyP{\alpha}{\beta}{n}@{z} = \frac{\Pochhammersym{\alpha + 1}{n}}{n!} \genhyperF{2}{1}@{- n , 1 + \alpha + \beta + n}{\alpha + 1}{\tfrac{1}{2}(1 - z)}


Mathematica

Translation
JacobiP[n, \[Alpha], \[Beta], z] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*HypergeometricPFQ[{- n , 1 + \[Alpha]+ \[Beta]+ n}, {\[Alpha]+ 1}, Divide[1,2]*(1 - z)]
Expected (Gold Entry)
JacobiP[n, \[Alpha], \[Beta], z] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*HypergeometricPFQ[{- n , 1 + \[Alpha]+ \[Beta]+ n}, {\[Alpha]+ 1}, Divide[1,2]*(1 - z)]


Maple

Translation
JacobiP(n, alpha, beta, z) = (pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n , 1 + alpha + beta + n], [alpha + 1], (1)/(2)*(1 - z))
Expected (Gold Entry)
JacobiP(n, alpha, beta, z) = (pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n , 1 + alpha + beta + n], [alpha + 1], (1)/(2)*(1 - z))