Gold 56

From LaTeX CAS translator demo
Jump to navigation Jump to search

Anger function

Gold ID
56
Link
https://sigir21.wmflabs.org/wiki/Anger_function#math.108.3
Formula
Jν(z)=cosπν2k=0(1)kz2k4kΓ(k+ν2+1)Γ(kν2+1)+sinπν2k=0(1)kz2k+122k+1Γ(k+ν2+32)Γ(kν2+32)
TeX Source
\mathbf{J}_\nu(z)=\cos\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k}}{4^k\Gamma\left(k+\frac{\nu}{2}+1\right)\Gamma\left(k-\frac{\nu}{2}+1\right)}+\sin\frac{\pi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^kz^{2k+1}}{2^{2k+1}\Gamma\left(k+\frac{\nu}{2}+\frac{3}{2}\right)\Gamma\left(k-\frac{\nu}{2}+\frac{3}{2}\right)}
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No No

Semantic LaTeX

Translation
\AngerJ{\nu}@{z} = \cos \frac{\cpi \nu}{2} \sum_{k=0}^\infty \frac{(-1)^k z^{2k}}{4^k \Gamma(k + \frac{\nu}{2} + 1) \Gamma(k - \frac{\nu}{2} + 1)} + \sin \frac{\cpi \nu}{2} \sum_{k=0}^\infty \frac{(-1)^k z^{2k+1}}{2^{2k+1} \Gamma(k + \frac{\nu}{2} + \frac{3}{2}) \Gamma(k - \frac{\nu}{2} + \frac{3}{2})}
Expected (Gold Entry)
\AngerJ{\nu}@{z} = \cos \frac{\cpi\nu}{2} \sum_{k=0}^\infty \frac{(-1)^k z^{2k}}{4^k\EulerGamma@{k+\frac{\nu}{2}+1}\EulerGamma@{k-\frac{\nu}{2}+1}}+\sin\frac{\cpi\nu}{2}\sum_{k=0}^\infty\frac{(-1)^k z^{2k+1}}{2^{2k+1}\EulerGamma@{k+\frac{\nu}{2}+\frac{3}{2}}\EulerGamma@{k-\frac{\nu}{2}+\frac{3}{2}}}


Mathematica

Translation
AngerJ[\[Nu], z] == Cos[Divide[Pi*\[Nu],2]]*Sum[Divide[(- 1)^(k)* (z)^(2*k),(4)^(k)* \[CapitalGamma]*(k +Divide[\[Nu],2]+ 1)*\[CapitalGamma]*(k -Divide[\[Nu],2]+ 1)], {k, 0, Infinity}, GenerateConditions->None]+ Sin[Divide[Pi*\[Nu],2]]*Sum[Divide[(- 1)^(k)* (z)^(2*k + 1),(2)^(2*k + 1)* \[CapitalGamma]*(k +Divide[\[Nu],2]+Divide[3,2])*\[CapitalGamma]*(k -Divide[\[Nu],2]+Divide[3,2])], {k, 0, Infinity}, GenerateConditions->None]
Expected (Gold Entry)
AngerJ[\[Nu], z] == Cos[Divide[Pi*\[Nu],2]]*Sum[Divide[(- 1)^(k)* (z)^(2*k),(4)^(k)* Gamma[k +Divide[\[Nu],2]+ 1]*Gamma[k -Divide[\[Nu],2]+ 1]], {k, 0, Infinity}]+ Sin[Divide[Pi*\[Nu],2]]*Sum[Divide[(- 1)^(k)* (z)^(2*k + 1),(2)^(2*k + 1)* Gamma[k +Divide[\[Nu],2]+Divide[3,2]]*Gamma[k -Divide[\[Nu],2]+Divide[3,2]]], {k, 0, Infinity}]


Maple

Translation
AngerJ(nu, z) = cos((Pi*nu)/(2))*sum(((- 1)^(k)* (z)^(2*k))/((4)^(k)* Gamma*(k +(nu)/(2)+ 1)*Gamma*(k -(nu)/(2)+ 1)), k = 0..infinity)+ sin((Pi*nu)/(2))*sum(((- 1)^(k)* (z)^(2*k + 1))/((2)^(2*k + 1)* Gamma*(k +(nu)/(2)+(3)/(2))*Gamma*(k -(nu)/(2)+(3)/(2))), k = 0..infinity)
Expected (Gold Entry)
AngerJ(nu, z) = cos((Pi*nu)/(2))*sum(((- 1)^(k)* (z)^(2*k))/((4)^(k)* GAMMA(k +(nu)/(2)+ 1)*GAMMA(k -(nu)/(2)+ 1)), k = 0..infinity)+ sin((Pi*nu)/(2))*sum(((- 1)^(k)* (z)^(2*k + 1))/((2)^(2*k + 1)* GAMMA(k +(nu)/(2)+(3)/(2))*GAMMA(k -(nu)/(2)+(3)/(2))), k = 0..infinity)