Gold 29
Jump to navigation
Jump to search
Sinc function
- Gold ID
- 29
- Link
- https://sigir21.wmflabs.org/wiki/Sinc_function#math.79.11
- Formula
- TeX Source
\int_{-\infty}^\infty \operatorname{sinc}(t) \, e^{-i 2 \pi f t}\,dt = \operatorname{rect}(f)
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
\int_{-\infty}^\infty \operatorname{sinc}(t) \expe^{- \iunit 2 \cpi f t} \diff{t} = \operatorname{rect}(f)
- Expected (Gold Entry)
\int_{-\infty}^\infty \operatorname{sinc}(t) \expe^{- \iunit 2 \cpi f t} \diff{t} = \operatorname{rect}(f)
Mathematica
- Translation
Integrate[sinc[t]* Exp[- I*2*Pi*f*t], {t, - Infinity, Infinity}, GenerateConditions->None] == rect[f]
- Expected (Gold Entry)
Integrate[sinc[(t)]*Exp[- I*2*Pi*f*t], {t, - Infinity, Infinity}] == rect[f]
Maple
- Translation
int(sinc(t)* exp(- I*2*Pi*f*t), t = - infinity..infinity) = rect(f)
- Expected (Gold Entry)
int(sinc((t))*exp(- I*2*Pi*f*t), t = - infinity..infinity) = rect(f)