Gold 26
Jump to navigation
Jump to search
Jacobi elliptic functions
- Gold ID
- 26
- Link
- https://sigir21.wmflabs.org/wiki/Jacobi_elliptic_functions#math.76.155
- Formula
- TeX Source
\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{dn}(z) = - k^2 \operatorname{sn}(z) \operatorname{cn}(z)
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
Semantic LaTeX
- Translation
\deriv [1]{ }{z} \Jacobielldnk@@{(z)}{k} = - k^2 \Jacobiellsnk@@{(z)}{k} \Jacobiellcnk@@{(z)}{k}
- Expected (Gold Entry)
\deriv [1]{ }{z} \Jacobielldnk@@{(z)}{k} = - k^2 \Jacobiellsnk@@{(z)}{k} \Jacobiellcnk@@{(z)}{k}
Mathematica
- Translation
D[JacobiDN[z, (k)^2], {z, 1}] == - (k)^(2)* JacobiSN[z, (k)^2]*JacobiCN[z, (k)^2]
- Expected (Gold Entry)
D[JacobiDN[z, (k)^2], {z, 1}] == - (k)^(2)* JacobiSN[z, (k)^2]*JacobiCN[z, (k)^2]
Maple
- Translation
diff(JacobiDN(z, k), [z$(1)]) = - (k)^(2)* JacobiSN(z, k)*JacobiCN(z, k)
- Expected (Gold Entry)
diff(JacobiDN(z, k), [z$\$$(1)]) = - (k)^(2)* JacobiSN(z, k)*JacobiCN(z, k)