Gold 26

From LaTeX CAS translator demo
Jump to navigation Jump to search

Jacobi elliptic functions

Gold ID
26
Link
https://sigir21.wmflabs.org/wiki/Jacobi_elliptic_functions#math.76.155
Formula
ddzdn(z)=k2sn(z)cn(z)
TeX Source
\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{dn}(z) = - k^2 \operatorname{sn}(z) \operatorname{cn}(z)
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes Yes Yes

Semantic LaTeX

Translation
\deriv [1]{ }{z} \Jacobielldnk@@{(z)}{k} = - k^2 \Jacobiellsnk@@{(z)}{k} \Jacobiellcnk@@{(z)}{k}
Expected (Gold Entry)
\deriv [1]{ }{z} \Jacobielldnk@@{(z)}{k} = - k^2 \Jacobiellsnk@@{(z)}{k} \Jacobiellcnk@@{(z)}{k}


Mathematica

Translation
D[JacobiDN[z, (k)^2], {z, 1}] == - (k)^(2)* JacobiSN[z, (k)^2]*JacobiCN[z, (k)^2]
Expected (Gold Entry)
D[JacobiDN[z, (k)^2], {z, 1}] == - (k)^(2)* JacobiSN[z, (k)^2]*JacobiCN[z, (k)^2]


Maple

Translation
diff(JacobiDN(z, k), [z$(1)]) = - (k)^(2)* JacobiSN(z, k)*JacobiCN(z, k)
Expected (Gold Entry)
diff(JacobiDN(z, k), [z$\$$(1)]) = - (k)^(2)* JacobiSN(z, k)*JacobiCN(z, k)