Gold 22
Jump to navigation
Jump to search
Airy function
- Gold ID
- 22
- Link
- https://sigir21.wmflabs.org/wiki/Airy_function#math.72.15
- Formula
- TeX Source
\operatorname{Bi}'(z)\sim \frac{z^{\frac{1}{4}}e^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt\pi\,}\left[ \sum_{n=0}^{\infty}\frac{1+6n}{1-6n} \dfrac{ \Gamma(n+\frac{5}{6})\Gamma(n+\frac{1}{6})\left(\frac{3}{4}\right)^n}{2\pi n! z^{3n/2}} \right]
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- | - |
Semantic LaTeX
- Translation
\operatorname{Bi} '(z) \sim \frac{z^{\frac{1}{4}} \expe^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt{\cpi}} [\sum_{n=0}^{\infty} \frac{1+6n}{1-6n} \dfrac{\Gamma(n + \frac{5}{6}) \Gamma(n + \frac{1}{6})(\frac{3}{4})^n{2 \cpi n! z^{3n/2}}}]
- Expected (Gold Entry)
\AiryBi'@{z} \sim \frac{z^{\frac{1}{4}} \expe^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt{\cpi}} [\sum_{n=0}^{\infty} \frac{1+6n}{1-6n} \frac{\EulerGamma@{n + \frac{5}{6}} \EulerGamma@{n + \frac{1}{6}}(\frac{3}{4})^n{2 \cpi n! z^{3n/2}}}]
Mathematica
- Translation
- Expected (Gold Entry)
Maple
- Translation
- Expected (Gold Entry)