9-j symbol

From LaTeX CAS translator demo
Jump to navigation Jump to search
Jucys diagram for the Wigner 9-j symbol. The diagram describes a summation over six 3-jm symbols. Plus signs on each nodes indicate an anticlockwise reading of the lines for the 3-jm symbol, whereas minus signs indicate clockwise. Due to its symmetries, there are many ways in which the diagram can be drawn.

In physics, Wigner's 9-j symbols were introduced by Eugene Paul Wigner in 1937. They are related to recoupling coefficients in quantum mechanics involving four angular momenta

(2j3+1)(2j6+1)(2j7+1)(2j8+1){j1j2j3j4j5j6j7j8j9}=((j1j2)j3,(j4j5)j6)j9|((j1j4)j7,(j2j5)j8)j9.

Recoupling of four angular momentum vectors

Coupling of two angular momenta j1 and j2 is the construction of simultaneous eigenfunctions of J2 and Jz, where J=j1+j2, as explained in the article on Clebsch–Gordan coefficients.

Coupling of three angular momenta can be done in several ways, as explained in the article on Racah W-coefficients. Using the notation and techniques of that article, total angular momentum states that arise from coupling the angular momentum vectors j1, j2, j4, and j5 may be written as

|((j1j2)j3,(j4j5)j6)j9m9.

Alternatively, one may first couple j1 and j4 to j7 and j2 and j5 to j8, before coupling j7 and j8 to j9:

|((j1j4)j7,(j2j5)j8)j9m9.

Both sets of functions provide a complete, orthonormal basis for the space with dimension (2j1+1)(2j2+1)(2j4+1)(2j5+1) spanned by

|j1m1|j2m2|j4m4|j5m5,m1=j1,,j1;m2=j2,,j2;m4=j4,,j4;m5=j5,,j5.

Hence, the transformation between the two sets is unitary and the matrix elements of the transformation are given by the scalar products of the functions. As in the case of the Racah W-coefficients the matrix elements are independent of the total angular momentum projection quantum number (m9):

|((j1j4)j7,(j2j5)j8)j9m9=j3j6|((j1j2)j3,(j4j5)j6)j9m9((j1j2)j3,(j4j5)j6)j9|((j1j4)j7,(j2j5)j8)j9.

Symmetry relations

A 9-j symbol is invariant under reflection about either diagonal as well as even permutations of its rows or columns:

{j1j2j3j4j5j6j7j8j9}={j1j4j7j2j5j8j3j6j9}={j9j6j3j8j5j2j7j4j1}={j7j4j1j9j6j3j8j5j2}.

An odd permutation of rows or columns yields a phase factor (1)S, where

S=i=19ji.

For example:

{j1j2j3j4j5j6j7j8j9}=(1)S{j4j5j6j1j2j3j7j8j9}=(1)S{j2j1j3j5j4j6j8j7j9}.

Reduction to 6j symbols

The 9-j symbols can be calculated as sums over triple-products of 6-j symbols where the summation extends over all x admitted by the triangle conditions in the factors:

{j1j2j3j4j5j6j7j8j9}=x(1)2x(2x+1){j1j4j7j8j9x}{j2j5j8j4xj6}{j3j6j9xj1j2}.

Special case

When j9=0 the 9-j symbol is proportional to a 6-j symbol:

{j1j2j3j4j5j6j7j80}=δj3,j6δj7,j8(2j3+1)(2j7+1)(1)j2+j3+j4+j7{j1j2j3j5j4j7}.

Orthogonality relation

The 9-j symbols satisfy this orthogonality relation:

j7j8(2j7+1)(2j8+1){j1j2j3j4j5j6j7j8j9}{j1j2j3j4j5j6j7j8j9}=δj3j3δj6j6{j1j2j3}{j4j5j6}{j3j6j9}(2j3+1)(2j6+1).

The triangular delta {j1  j2  j3} is equal to 1 when the triad (j1, j2, j3) satisfies the triangle conditions, and zero otherwise.

3n-j symbols

The 6-j symbol is the first representative, n = 2, of 3n-j symbols that are defined as sums of products of n of Wigner's 3-jm coefficients. The sums are over all combinations of m that the 3n-j coefficients admit, i.e., which lead to non-vanishing contributions.

If each 3-jm factor is represented by a vertex and each j by an edge, these 3n-j symbols can be mapped on certain 3-regular graphs with 3n vertices and 2n nodes. The 6-j symbol is associated with the K4 graph on 4 vertices, the 9-j symbol with the utility graph on 6 vertices (K3,3), and the two distinct (non-isomorphic) 12-j symbols with the Q3 and Wagner graphs on 8 vertices. Symmetry relations are generally representative of the automorphism group of these graphs.

See also

References

  • Biedenharn, L. C.; van Dam, H. (1965). Quantum Theory of Angular Momentum: A collection of Reprints and Original Papers. New York: Academic Press. ISBN 0120960567.
  • Edmonds, A. R. (1957). Angular Momentum in Quantum Mechanics. Princeton, New Jersey: Princeton University Press. ISBN 0-691-07912-9.
  • Condon, Edward U.; Shortley, G. H. (1970). "Chapter 3". The Theory of Atomic Spectra. Cambridge: Cambridge University Press. ISBN 0-521-09209-4.
  • Maximon, Leonard C. (2010), "3j,6j,9j Symbols", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Messiah, Albert (1981). Quantum Mechanics (Volume II) (12th ed.). New York: North Holland Publishing. ISBN 0-7204-0045-7.
  • Brink, D. M.; Satchler, G. R. (1993). "Chapter 2". Angular Momentum (3rd ed.). Oxford: Clarendon Press. ISBN 0-19-851759-9.
  • Zare, Richard N. (1988). "Chapter 2". Angular Momentum. New York: John Wiley. ISBN 0-471-85892-7.
  • Biedenharn, L. C.; Louck, J. D. (1981). Angular Momentum in Quantum Physics. Reading, Massachusetts: Addison-Wesley. ISBN 0201135078.
  • Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K. (1988). Quantum Theory of Angular Momentum. Singapore: World Scientific. ISBN 9971-50-107-4.
  • Jahn, H. A.; Hope, J. (1954). "Symmetry properties of the Wigner 9j symbol". Physical Review. 93 (2): 318. Bibcode:1954PhRv...93..318J. doi:10.1103/PhysRev.93.318.

External links