Gold 77

From LaTeX CAS translator demo
Revision as of 13:36, 1 September 2021 by Admin (talk | contribs) (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Q-Hahn polynomials

Gold ID
77
Link
https://sigir21.wmflabs.org/wiki/Q-Hahn_polynomials#math.129.0
Formula
Qn(x;a,b,N;q)=3ϕ2[qnabqn+1xaqqN;q,q]
TeX Source
Q_n(x;a,b,N;q)=\;_{3}\phi_2\left[\begin{matrix} q^-n & abq^n+1 & x \\ aq & q^-N \end{matrix} ; q,q \right]
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No -

Semantic LaTeX

Translation
Q_n(x ; a , b , N ; q) =_{3} \phi_2 [\begin{matrix} q^-n & abq^n+1 & x \\ aq & q^-N \end{matrix} ; q , q]
Expected (Gold Entry)
\qHahnpolyQ{n}@{x}{a}{b}{N}{q} = \qgenhyperphi{3}{2}@{q^-n , abq^n+1 , x}{aq , q^-N}{q}{q}


Mathematica

Translation
Expected (Gold Entry)
Q[n_, x_, a_, b_, N_, q_] := QHypergeometricPFQ[{(q)^(-)* n , a*b*(q)^(n)+ 1 , x},{a*q , (q)^(-)* N},q,q]


Maple

Translation
Expected (Gold Entry)