Gold 22

From LaTeX CAS translator demo
Revision as of 13:35, 1 September 2021 by Admin (talk | contribs) (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Airy function

Gold ID
22
Link
https://sigir21.wmflabs.org/wiki/Airy_function#math.72.15
Formula
Bi(z)z14e23z32π[n=01+6n16nΓ(n+56)Γ(n+16)(34)n2πn!z3n/2]
TeX Source
\operatorname{Bi}'(z)\sim \frac{z^{\frac{1}{4}}e^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt\pi\,}\left[ \sum_{n=0}^{\infty}\frac{1+6n}{1-6n} \dfrac{ \Gamma(n+\frac{5}{6})\Gamma(n+\frac{1}{6})\left(\frac{3}{4}\right)^n}{2\pi n! z^{3n/2}} \right]
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No - -

Semantic LaTeX

Translation
\operatorname{Bi} '(z) \sim \frac{z^{\frac{1}{4}} \expe^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt{\cpi}} [\sum_{n=0}^{\infty} \frac{1+6n}{1-6n} \dfrac{\Gamma(n + \frac{5}{6}) \Gamma(n + \frac{1}{6})(\frac{3}{4})^n{2 \cpi n! z^{3n/2}}}]
Expected (Gold Entry)
\AiryBi'@{z} \sim \frac{z^{\frac{1}{4}} \expe^{\frac{2}{3}z^{\frac{3}{2}}}}{\sqrt{\cpi}} [\sum_{n=0}^{\infty} \frac{1+6n}{1-6n} \frac{\EulerGamma@{n + \frac{5}{6}} \EulerGamma@{n + \frac{1}{6}}(\frac{3}{4})^n{2 \cpi n! z^{3n/2}}}]


Mathematica

Translation
Expected (Gold Entry)


Maple

Translation
Expected (Gold Entry)