LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle V(a,x)=\frac{\Gamma(\tfrac12+a)}{\pi}[\sin( \pi a) D_{-a-\tfrac12}(x)+D_{-a-\tfrac12}(-x)] .}

... is translated to the CAS output ...

Semantic latex: \paraV@{a}{x} = \frac{\Gamma(\tfrac12+a)}{\cpi} [\sin(\cpi a) \WhittakerparaD{-a-\tfrac12}@{x} + \WhittakerparaD{-a-\tfrac12}@{- x}]

Confidence: 0.86035642002378

Mathematica

Translation: Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x] + ParabolicCylinderD[-(a) - 1/2, -(x)]) == Divide[\[CapitalGamma]*(Divide[1,2]+ a),Pi]*(Sin[Pi*a]*ParabolicCylinderD[- a -Divide[1,2], x]+ ParabolicCylinderD[- a -Divide[1,2], - x])

Information

Sub Equations

  • Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x] + ParabolicCylinderD[-(a) - 1/2, -(x)]) = Divide[\[CapitalGamma]*(Divide[1,2]+ a),Pi]*(Sin[Pi*a]*ParabolicCylinderD[- a -Divide[1,2], x]+ ParabolicCylinderD[- a -Divide[1,2], - x])

Free variables

  • \[CapitalGamma]
  • a
  • x

Symbol info

  • Whittaker's notation D for the parabolic cylinder function; Example: \WhittakerparaD{\nu}@{z}

Will be translated to: ParabolicCylinderD[$0, $1] Relevant links to definitions: DLMF: http://dlmf.nist.gov/12.1 Mathematica: https://reference.wolfram.com/language/ref/ParabolicCylinderD.html

  • Pi was translated to: Pi
  • Sine; Example: \sin@@{z}

Will be translated to: Sin[$0] Relevant links to definitions: DLMF: http://dlmf.nist.gov/4.14#E1 Mathematica: https://reference.wolfram.com/language/ref/Sin.html

  • Parabolic cylinder function V; Example: \paraV@{a}{z}

Will be translated to: Alternative translations: [Divide[GAMMA[1/2 + $0], Pi]*(Sin[Pi*($0)] * ParabolicCylinderD[-($0) - 1/2, $1] + ParabolicCylinderD[-($0) - 1/2, -($1)])]Relevant links to definitions: DLMF: http://dlmf.nist.gov/12.4#E2 Mathematica: https://reference.wolfram.com/language/ref/Divide.html

Tests

Symbolic

Test expression: (Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x] + ParabolicCylinderD[-(a) - 1/2, -(x)]))-(Divide[\[CapitalGamma]*(Divide[1,2]+ a),Pi]*(Sin[Pi*a]*ParabolicCylinderD[- a -Divide[1,2], x]+ ParabolicCylinderD[- a -Divide[1,2], - x]))

ERROR:

{
    "result": "ERROR",
    "testTitle": "Simple",
    "testExpression": null,
    "resultExpression": null,
    "wasAborted": false,
    "conditionallySuccessful": false
}
Numeric

SymPy

Translation:

Information

Symbol info

  • (LaTeX -> SymPy) No translation possible for given token: Cannot extract information from feature set: \paraV [\paraV]

Tests

Symbolic
Numeric

Maple

Translation: CylinderV(a, x) = (Gamma*((1)/(2)+ a))/(Pi)*(sin(Pi*a)*CylinderD(- a -(1)/(2), x)+ CylinderD(- a -(1)/(2), - x))

Information

Sub Equations

  • CylinderV(a, x) = (Gamma*((1)/(2)+ a))/(Pi)*(sin(Pi*a)*CylinderD(- a -(1)/(2), x)+ CylinderD(- a -(1)/(2), - x))

Free variables

  • Gamma
  • a
  • x

Symbol info

  • Whittaker's notation D for the parabolic cylinder function; Example: \WhittakerparaD{\nu}@{z}

Will be translated to: CylinderD($0, $1) Relevant links to definitions: DLMF: http://dlmf.nist.gov/12.1 Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=CylinderD

  • Pi was translated to: Pi
  • Sine; Example: \sin@@{z}

Will be translated to: sin($0) Relevant links to definitions: DLMF: http://dlmf.nist.gov/4.14#E1 Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=sin

  • Parabolic cylinder function V; Example: \paraV@{a}{z}

Will be translated to: CylinderV($0, $1) Relevant links to definitions: DLMF: http://dlmf.nist.gov/12.4#E2 Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=CylinderV

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Description

  • parabolic cylinder
  • function
  • Abramowitz
  • notation
  • Whittaker
  • Stegun

Complete translation information:

{
  "id" : "FORMULA_3917cd1bf33fbdb465269a3cfbe67e4e",
  "formula" : "V(a,x)=\\frac{\\Gamma(\\tfrac12+a)}{\\pi}[\\sin( \\pi a) D_{-a-\\tfrac12}(x)+D_{-a-\\tfrac12}(-x)]",
  "semanticFormula" : "\\paraV@{a}{x} = \\frac{\\Gamma(\\tfrac12+a)}{\\cpi} [\\sin(\\cpi a) \\WhittakerparaD{-a-\\tfrac12}@{x} + \\WhittakerparaD{-a-\\tfrac12}@{- x}]",
  "confidence" : 0.8603564200237752,
  "translations" : {
    "Mathematica" : {
      "translation" : "Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x] + ParabolicCylinderD[-(a) - 1/2, -(x)]) == Divide[\\[CapitalGamma]*(Divide[1,2]+ a),Pi]*(Sin[Pi*a]*ParabolicCylinderD[- a -Divide[1,2], x]+ ParabolicCylinderD[- a -Divide[1,2], - x])",
      "translationInformation" : {
        "subEquations" : [ "Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x] + ParabolicCylinderD[-(a) - 1/2, -(x)]) = Divide[\\[CapitalGamma]*(Divide[1,2]+ a),Pi]*(Sin[Pi*a]*ParabolicCylinderD[- a -Divide[1,2], x]+ ParabolicCylinderD[- a -Divide[1,2], - x])" ],
        "freeVariables" : [ "\\[CapitalGamma]", "a", "x" ],
        "tokenTranslations" : {
          "\\WhittakerparaD" : "Whittaker's notation D for the parabolic cylinder function; Example: \\WhittakerparaD{\\nu}@{z}\nWill be translated to: ParabolicCylinderD[$0, $1]\nRelevant links to definitions:\nDLMF:         http://dlmf.nist.gov/12.1\nMathematica:  https://reference.wolfram.com/language/ref/ParabolicCylinderD.html",
          "\\cpi" : "Pi was translated to: Pi",
          "\\sin" : "Sine; Example: \\sin@@{z}\nWill be translated to: Sin[$0]\nRelevant links to definitions:\nDLMF:         http://dlmf.nist.gov/4.14#E1\nMathematica:  https://reference.wolfram.com/language/ref/Sin.html",
          "\\paraV" : "Parabolic cylinder function V; Example: \\paraV@{a}{z}\nWill be translated to: \nAlternative translations: [Divide[GAMMA[1/2 + $0], Pi]*(Sin[Pi*($0)] * ParabolicCylinderD[-($0) - 1/2, $1] + ParabolicCylinderD[-($0) - 1/2, -($1)])]Relevant links to definitions:\nDLMF:         http://dlmf.nist.gov/12.4#E2\nMathematica:  https://reference.wolfram.com/language/ref/Divide.html"
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "ERROR",
        "numberOfTests" : 1,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 1,
        "crashed" : false,
        "testCalculationsGroup" : [ {
          "lhs" : "Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x] + ParabolicCylinderD[-(a) - 1/2, -(x)])",
          "rhs" : "Divide[\\[CapitalGamma]*(Divide[1,2]+ a),Pi]*(Sin[Pi*a]*ParabolicCylinderD[- a -Divide[1,2], x]+ ParabolicCylinderD[- a -Divide[1,2], - x])",
          "testExpression" : "(Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x] + ParabolicCylinderD[-(a) - 1/2, -(x)]))-(Divide[\\[CapitalGamma]*(Divide[1,2]+ a),Pi]*(Sin[Pi*a]*ParabolicCylinderD[- a -Divide[1,2], x]+ ParabolicCylinderD[- a -Divide[1,2], - x]))",
          "testCalculations" : [ {
            "result" : "ERROR",
            "testTitle" : "Simple",
            "testExpression" : null,
            "resultExpression" : null,
            "wasAborted" : false,
            "conditionallySuccessful" : false
          } ]
        } ]
      }
    },
    "SymPy" : {
      "translation" : "",
      "translationInformation" : {
        "tokenTranslations" : {
          "Error" : "(LaTeX -> SymPy) No translation possible for given token: Cannot extract information from feature set: \\paraV [\\paraV]"
        }
      }
    },
    "Maple" : {
      "translation" : "CylinderV(a, x) = (Gamma*((1)/(2)+ a))/(Pi)*(sin(Pi*a)*CylinderD(- a -(1)/(2), x)+ CylinderD(- a -(1)/(2), - x))",
      "translationInformation" : {
        "subEquations" : [ "CylinderV(a, x) = (Gamma*((1)/(2)+ a))/(Pi)*(sin(Pi*a)*CylinderD(- a -(1)/(2), x)+ CylinderD(- a -(1)/(2), - x))" ],
        "freeVariables" : [ "Gamma", "a", "x" ],
        "tokenTranslations" : {
          "\\WhittakerparaD" : "Whittaker's notation D for the parabolic cylinder function; Example: \\WhittakerparaD{\\nu}@{z}\nWill be translated to: CylinderD($0, $1)\nRelevant links to definitions:\nDLMF:  http://dlmf.nist.gov/12.1\nMaple: https://www.maplesoft.com/support/help/maple/view.aspx?path=CylinderD",
          "\\cpi" : "Pi was translated to: Pi",
          "\\sin" : "Sine; Example: \\sin@@{z}\nWill be translated to: sin($0)\nRelevant links to definitions:\nDLMF:  http://dlmf.nist.gov/4.14#E1\nMaple: https://www.maplesoft.com/support/help/maple/view.aspx?path=sin",
          "\\paraV" : "Parabolic cylinder function V; Example: \\paraV@{a}{z}\nWill be translated to: CylinderV($0, $1)\nRelevant links to definitions:\nDLMF:  http://dlmf.nist.gov/12.4#E2\nMaple: https://www.maplesoft.com/support/help/maple/view.aspx?path=CylinderV"
        }
      }
    }
  },
  "positions" : [ {
    "section" : 1,
    "sentence" : 7,
    "word" : 44
  } ],
  "includes" : [ "a", "V(a,z)", "f(a,z)", "U(a,z)", "D_{p}(x)", "V" ],
  "isPartOf" : [ ],
  "definiens" : [ {
    "definition" : "parabolic cylinder",
    "score" : 0.6202889650070861
  }, {
    "definition" : "function",
    "score" : 0.5835050192745167
  }, {
    "definition" : "Abramowitz",
    "score" : 0.5730317852477183
  }, {
    "definition" : "notation",
    "score" : 0.5730317852477183
  }, {
    "definition" : "Whittaker",
    "score" : 0.5730317852477183
  }, {
    "definition" : "Stegun",
    "score" : 0.5243095238095238
  } ]
}

Specify your own input