LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle \Phi(\omega, s, \alpha) = \sum_{n=0}^\infty \frac {\omega^n} {(n+\alpha)^s} = \sum_{m=0}^{q-1} \sum_{n=0}^\infty \frac {\omega^{qn + m}}{(qn + m + \alpha)^s} = \sum_{m=0}^{q-1} \omega^m q^{-s} \zeta(s,\frac{m + \alpha}{q})}

... is translated to the CAS output ...

Semantic latex: \Phi(\omega, s, \alpha) = \sum_{n=0}^\infty \frac {\omega^n} {(n+\alpha)^s} = \sum_{m=0}^{q-1} \sum_{n=0}^\infty \frac {\omega^{qn + m}}{(qn + m + \alpha)^s} = \sum_{m=0}^{q-1} \omega^m q^{-s} \zeta(s,\frac{m + \alpha}{q})

Confidence: 0

Mathematica

Translation: \[CapitalPhi][\[Omega], s , \[Alpha]] == Sum[Divide[\[Omega]^(n),(n + \[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None] == Sum[Sum[Divide[\[Omega]^(q*n + m),(q*n + m + \[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None], {m, 0, q - 1}, GenerateConditions->None] == Sum[\[Omega]^(m)* (q)^(- s)* \[Zeta][s ,Divide[m + \[Alpha],q]], {m, 0, q - 1}, GenerateConditions->None]

Information

Sub Equations

  • \[CapitalPhi][\[Omega], s , \[Alpha]] = Sum[Divide[\[Omega]^(n),(n + \[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None]
  • Sum[Divide[\[Omega]^(n),(n + \[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None] = Sum[Sum[Divide[\[Omega]^(q*n + m),(q*n + m + \[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None], {m, 0, q - 1}, GenerateConditions->None]
  • Sum[Sum[Divide[\[Omega]^(q*n + m),(q*n + m + \[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None], {m, 0, q - 1}, GenerateConditions->None] = Sum[\[Omega]^(m)* (q)^(- s)* \[Zeta][s ,Divide[m + \[Alpha],q]], {m, 0, q - 1}, GenerateConditions->None]

Free variables

  • \[Alpha]
  • \[CapitalPhi]
  • \[Omega]
  • \[Zeta]
  • q
  • s

Symbol info

  • Could be the second Feigenbaum constant.

But this system doesn't know how to translate it as a constant. It was translated as a general letter.

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).
  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).

Tests

Symbolic
Numeric

SymPy

Translation: Symbol('Phi')(Symbol('omega'), s , Symbol('alpha')) == Sum(((Symbol('omega'))**(n))/((n + Symbol('alpha'))**(s)), (n, 0, oo)) == Sum(Sum(((Symbol('omega'))**(q*n + m))/((q*n + m + Symbol('alpha'))**(s)), (n, 0, oo)), (m, 0, q - 1)) == Sum((Symbol('omega'))**(m)* (q)**(- s)* Symbol('zeta')(s ,(m + Symbol('alpha'))/(q)), (m, 0, q - 1))

Information

Sub Equations

  • Symbol('Phi')(Symbol('omega'), s , Symbol('alpha')) = Sum(((Symbol('omega'))**(n))/((n + Symbol('alpha'))**(s)), (n, 0, oo))
  • Sum(((Symbol('omega'))**(n))/((n + Symbol('alpha'))**(s)), (n, 0, oo)) = Sum(Sum(((Symbol('omega'))**(q*n + m))/((q*n + m + Symbol('alpha'))**(s)), (n, 0, oo)), (m, 0, q - 1))
  • Sum(Sum(((Symbol('omega'))**(q*n + m))/((q*n + m + Symbol('alpha'))**(s)), (n, 0, oo)), (m, 0, q - 1)) = Sum((Symbol('omega'))**(m)* (q)**(- s)* Symbol('zeta')(s ,(m + Symbol('alpha'))/(q)), (m, 0, q - 1))

Free variables

  • Symbol('Phi')
  • Symbol('alpha')
  • Symbol('omega')
  • Symbol('zeta')
  • q
  • s

Symbol info

  • Could be the second Feigenbaum constant.

But this system doesn't know how to translate it as a constant. It was translated as a general letter.

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).
  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).

Tests

Symbolic
Numeric

Maple

Translation: Phi(omega , s , alpha) = sum(((omega)^(n))/((n + alpha)^(s)), n = 0..infinity) = sum(sum(((omega)^(q*n + m))/((q*n + m + alpha)^(s)), n = 0..infinity), m = 0..q - 1) = sum((omega)^(m)* (q)^(- s)* zeta(s ,(m + alpha)/(q)), m = 0..q - 1)

Information

Sub Equations

  • Phi(omega , s , alpha) = sum(((omega)^(n))/((n + alpha)^(s)), n = 0..infinity)
  • sum(((omega)^(n))/((n + alpha)^(s)), n = 0..infinity) = sum(sum(((omega)^(q*n + m))/((q*n + m + alpha)^(s)), n = 0..infinity), m = 0..q - 1)
  • sum(sum(((omega)^(q*n + m))/((q*n + m + alpha)^(s)), n = 0..infinity), m = 0..q - 1) = sum((omega)^(m)* (q)^(- s)* zeta(s ,(m + alpha)/(q)), m = 0..q - 1)

Free variables

  • Phi
  • alpha
  • omega
  • q
  • s
  • zeta

Symbol info

  • Could be the second Feigenbaum constant.

But this system doesn't know how to translate it as a constant. It was translated as a general letter.

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).
  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Is part of

Complete translation information:

{
  "id" : "FORMULA_2df8c33ae0585e530cb3a0b15f6685df",
  "formula" : "\\Phi(\\omega, s, \\alpha) = \\sum_{n=0}^\\infty\n\\frac {\\omega^n} {(n+\\alpha)^s} = \\sum_{m=0}^{q-1} \\sum_{n=0}^\\infty \\frac {\\omega^{qn + m}}{(qn + m + \\alpha)^s} = \\sum_{m=0}^{q-1} \\omega^m q^{-s} \\zeta(s,\\frac{m + \\alpha}{q})",
  "semanticFormula" : "\\Phi(\\omega, s, \\alpha) = \\sum_{n=0}^\\infty\n\\frac {\\omega^n} {(n+\\alpha)^s} = \\sum_{m=0}^{q-1} \\sum_{n=0}^\\infty \\frac {\\omega^{qn + m}}{(qn + m + \\alpha)^s} = \\sum_{m=0}^{q-1} \\omega^m q^{-s} \\zeta(s,\\frac{m + \\alpha}{q})",
  "confidence" : 0.0,
  "translations" : {
    "Mathematica" : {
      "translation" : "\\[CapitalPhi][\\[Omega], s , \\[Alpha]] == Sum[Divide[\\[Omega]^(n),(n + \\[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None] == Sum[Sum[Divide[\\[Omega]^(q*n + m),(q*n + m + \\[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None], {m, 0, q - 1}, GenerateConditions->None] == Sum[\\[Omega]^(m)* (q)^(- s)* \\[Zeta][s ,Divide[m + \\[Alpha],q]], {m, 0, q - 1}, GenerateConditions->None]",
      "translationInformation" : {
        "subEquations" : [ "\\[CapitalPhi][\\[Omega], s , \\[Alpha]] = Sum[Divide[\\[Omega]^(n),(n + \\[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None]", "Sum[Divide[\\[Omega]^(n),(n + \\[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None] = Sum[Sum[Divide[\\[Omega]^(q*n + m),(q*n + m + \\[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None], {m, 0, q - 1}, GenerateConditions->None]", "Sum[Sum[Divide[\\[Omega]^(q*n + m),(q*n + m + \\[Alpha])^(s)], {n, 0, Infinity}, GenerateConditions->None], {m, 0, q - 1}, GenerateConditions->None] = Sum[\\[Omega]^(m)* (q)^(- s)* \\[Zeta][s ,Divide[m + \\[Alpha],q]], {m, 0, q - 1}, GenerateConditions->None]" ],
        "freeVariables" : [ "\\[Alpha]", "\\[CapitalPhi]", "\\[Omega]", "\\[Zeta]", "q", "s" ],
        "tokenTranslations" : {
          "\\alpha" : "Could be the second Feigenbaum constant.\nBut this system doesn't know how to translate it as a constant. It was translated as a general letter.\n",
          "\\zeta" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary).",
          "\\Phi" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary)."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    },
    "SymPy" : {
      "translation" : "Symbol('Phi')(Symbol('omega'), s , Symbol('alpha')) == Sum(((Symbol('omega'))**(n))/((n + Symbol('alpha'))**(s)), (n, 0, oo)) == Sum(Sum(((Symbol('omega'))**(q*n + m))/((q*n + m + Symbol('alpha'))**(s)), (n, 0, oo)), (m, 0, q - 1)) == Sum((Symbol('omega'))**(m)* (q)**(- s)* Symbol('zeta')(s ,(m + Symbol('alpha'))/(q)), (m, 0, q - 1))",
      "translationInformation" : {
        "subEquations" : [ "Symbol('Phi')(Symbol('omega'), s , Symbol('alpha')) = Sum(((Symbol('omega'))**(n))/((n + Symbol('alpha'))**(s)), (n, 0, oo))", "Sum(((Symbol('omega'))**(n))/((n + Symbol('alpha'))**(s)), (n, 0, oo)) = Sum(Sum(((Symbol('omega'))**(q*n + m))/((q*n + m + Symbol('alpha'))**(s)), (n, 0, oo)), (m, 0, q - 1))", "Sum(Sum(((Symbol('omega'))**(q*n + m))/((q*n + m + Symbol('alpha'))**(s)), (n, 0, oo)), (m, 0, q - 1)) = Sum((Symbol('omega'))**(m)* (q)**(- s)* Symbol('zeta')(s ,(m + Symbol('alpha'))/(q)), (m, 0, q - 1))" ],
        "freeVariables" : [ "Symbol('Phi')", "Symbol('alpha')", "Symbol('omega')", "Symbol('zeta')", "q", "s" ],
        "tokenTranslations" : {
          "\\alpha" : "Could be the second Feigenbaum constant.\nBut this system doesn't know how to translate it as a constant. It was translated as a general letter.\n",
          "\\zeta" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary).",
          "\\Phi" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary)."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    },
    "Maple" : {
      "translation" : "Phi(omega , s , alpha) = sum(((omega)^(n))/((n + alpha)^(s)), n = 0..infinity) = sum(sum(((omega)^(q*n + m))/((q*n + m + alpha)^(s)), n = 0..infinity), m = 0..q - 1) = sum((omega)^(m)* (q)^(- s)* zeta(s ,(m + alpha)/(q)), m = 0..q - 1)",
      "translationInformation" : {
        "subEquations" : [ "Phi(omega , s , alpha) = sum(((omega)^(n))/((n + alpha)^(s)), n = 0..infinity)", "sum(((omega)^(n))/((n + alpha)^(s)), n = 0..infinity) = sum(sum(((omega)^(q*n + m))/((q*n + m + alpha)^(s)), n = 0..infinity), m = 0..q - 1)", "sum(sum(((omega)^(q*n + m))/((q*n + m + alpha)^(s)), n = 0..infinity), m = 0..q - 1) = sum((omega)^(m)* (q)^(- s)* zeta(s ,(m + alpha)/(q)), m = 0..q - 1)" ],
        "freeVariables" : [ "Phi", "alpha", "omega", "q", "s", "zeta" ],
        "tokenTranslations" : {
          "\\alpha" : "Could be the second Feigenbaum constant.\nBut this system doesn't know how to translate it as a constant. It was translated as a general letter.\n",
          "\\zeta" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary).",
          "\\Phi" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary)."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    }
  },
  "positions" : [ ],
  "includes" : [ "\\Phi(z,s,a)", "\\Phi(z, s, \\alpha) = \\sum_{n=0}^\\infty\\frac { z^n} {(n+\\alpha)^s}", "\\Phi(\\omega, s, \\alpha) = \\sum_{n=0}^\\infty\\frac {\\omega^n} {(n+\\alpha)^s} = \\sum_{m=0}^{q-1} \\sum_{n=0}^\\infty \\frac {\\omega^{qn + m}}{(qn + m + \\alpha)^s} = \\sum_{m=0}^{q-1} \\omega^m q^{-s} \\zeta(s,\\frac{m + \\alpha}{q})", "s", "n= 0" ],
  "isPartOf" : [ "\\Phi(\\omega, s, \\alpha) = \\sum_{n=0}^\\infty\\frac {\\omega^n} {(n+\\alpha)^s} = \\sum_{m=0}^{q-1} \\sum_{n=0}^\\infty \\frac {\\omega^{qn + m}}{(qn + m + \\alpha)^s} = \\sum_{m=0}^{q-1} \\omega^m q^{-s} \\zeta(s,\\frac{m + \\alpha}{q})" ],
  "definiens" : [ ]
}

Specify your own input