LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle L_{-n}(x)=e^xL_{n-1}(-x).}

... is translated to the CAS output ...

Semantic latex: L_{-n}(x) = \expe^x L_{n-1}(- x)

Confidence: 0

Mathematica

Translation: Subscript[L, - n][x] == Exp[x]*Subscript[L, n - 1][- x]

Information

Sub Equations

  • Subscript[L, - n][x] = Exp[x]*Subscript[L, n - 1][- x]

Free variables

  • n
  • x

Symbol info

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).
  • Recognizes e with power as the exponential function. It was translated as a function.

Tests

Symbolic
Numeric

SymPy

Translation: Symbol('{L}_{- n}')(x) == exp(x)*Symbol('{L}_{n - 1}')(- x)

Information

Sub Equations

  • Symbol('{L}_{- n}')(x) = exp(x)*Symbol('{L}_{n - 1}')(- x)

Free variables

  • n
  • x

Symbol info

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).
  • Recognizes e with power as the exponential function. It was translated as a function.

Tests

Symbolic
Numeric

Maple

Translation: L[- n](x) = exp(x)*L[n - 1](- x)

Information

Sub Equations

  • L[- n](x) = exp(x)*L[n - 1](- x)

Free variables

  • n
  • x

Symbol info

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).
  • Recognizes e with power as the exponential function. It was translated as a function.

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Is part of

Complete translation information:

{
  "id" : "FORMULA_42a0b0241aac93e77b485fdad16e56d1",
  "formula" : "L_{-n}(x)=e^x L_{n-1}(-x)",
  "semanticFormula" : "L_{-n}(x) = \\expe^x L_{n-1}(- x)",
  "confidence" : 0.0,
  "translations" : {
    "Mathematica" : {
      "translation" : "Subscript[L, - n][x] == Exp[x]*Subscript[L, n - 1][- x]",
      "translationInformation" : {
        "subEquations" : [ "Subscript[L, - n][x] = Exp[x]*Subscript[L, n - 1][- x]" ],
        "freeVariables" : [ "n", "x" ],
        "tokenTranslations" : {
          "L" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary).",
          "\\expe" : "Recognizes e with power as the exponential function. It was translated as a function."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    },
    "SymPy" : {
      "translation" : "Symbol('{L}_{- n}')(x) == exp(x)*Symbol('{L}_{n - 1}')(- x)",
      "translationInformation" : {
        "subEquations" : [ "Symbol('{L}_{- n}')(x) = exp(x)*Symbol('{L}_{n - 1}')(- x)" ],
        "freeVariables" : [ "n", "x" ],
        "tokenTranslations" : {
          "L" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary).",
          "\\expe" : "Recognizes e with power as the exponential function. It was translated as a function."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    },
    "Maple" : {
      "translation" : "L[- n](x) = exp(x)*L[n - 1](- x)",
      "translationInformation" : {
        "subEquations" : [ "L[- n](x) = exp(x)*L[n - 1](- x)" ],
        "freeVariables" : [ "n", "x" ],
        "tokenTranslations" : {
          "L" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary).",
          "\\expe" : "Recognizes e with power as the exponential function. It was translated as a function."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    }
  },
  "positions" : [ ],
  "includes" : [ "L_{-n}(x)=e^xL_{n-1}(-x)", "n" ],
  "isPartOf" : [ "L_{-n}(x)=e^xL_{n-1}(-x)" ],
  "definiens" : [ ]
}

Specify your own input