LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle \begin{align} \mathit{He}_n(x+y) &= \sum_{k=0}^n \binom{n}{k}x^{n-k} \mathit{He}_{k}(y) &&= 2^{-\frac n 2} \sum_{k=0}^n \binom{n}{k} \mathit{He}_{n-k}\left(x\sqrt 2\right) \mathit{He}_k\left(y\sqrt 2\right), \\ H_n(x+y) &= \sum_{k=0}^n \binom{n}{k}H_{k}(x) (2y)^{(n-k)} &&= 2^{-\frac n 2}\cdot\sum_{k=0}^n \binom{n}{k} H_{n-k}\left(x\sqrt 2\right) H_k\left(y\sqrt 2\right). \end{align}}

... is translated to the CAS output ...

Semantic latex: \begin{align}\dilHermitepolyHe{n}@{x + y} &= \sum_{k=0}^n \binom{n}{k} x^{n-k} \dilHermitepolyHe{k}@{y} & &= 2^{-\frac n 2} \sum_{k=0}^n \binom{n}{k} \dilHermitepolyHe{n-k}@{x \sqrt 2} \dilHermitepolyHe{k}@{y \sqrt 2} , \\ \HermitepolyH{n}@{x + y} &= \sum_{k=0}^n \binom{n}{k} \HermitepolyH{k}@{x}(2 y)^{(n-k)} & &= 2^{-\frac n 2} \cdot \sum_{k=0}^n \binom{n}{k} \HermitepolyH{n-k}@{x \sqrt 2} \HermitepolyH{k}@{y \sqrt 2} .\end{align}

Confidence: 0.70534931540022

Mathematica

Translation:

Information

Symbol info

  • (LaTeX -> Mathematica) No translation possible for given token: Cannot extract information from feature set: \dilHermitepolyHe [\dilHermitepolyHe]

Tests

Symbolic
Numeric

SymPy

Translation:

Information

Symbol info

  • (LaTeX -> SymPy) No translation possible for given token: Cannot extract information from feature set: \dilHermitepolyHe [\dilHermitepolyHe]

Tests

Symbolic
Numeric

Maple

Translation:

Information

Symbol info

  • (LaTeX -> Maple) No translation possible for given token: Cannot extract information from feature set: \dilHermitepolyHe [\dilHermitepolyHe]

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Is part of

Complete translation information:

{
  "id" : "FORMULA_beda56f48cc67e71548c9d74cc09b23b",
  "formula" : "\\begin{align}\n \\mathit{He}_n(x+y) &= \\sum_{k=0}^n \\binom{n}{k}x^{n-k} \\mathit{He}_{k}(y)\n  &&= 2^{-\\frac n 2} \\sum_{k=0}^n \\binom{n}{k} \\mathit{He}_{n-k}\\left(x\\sqrt 2\\right) \\mathit{He}_k\\left(y\\sqrt 2\\right), \\\\\n H_n(x+y) &= \\sum_{k=0}^n \\binom{n}{k}H_{k}(x) (2y)^{(n-k)}\n  &&= 2^{-\\frac n 2}\\cdot\\sum_{k=0}^n \\binom{n}{k} H_{n-k}\\left(x\\sqrt 2\\right) H_k\\left(y\\sqrt 2\\right).\n\\end{align}",
  "semanticFormula" : "\\begin{align}\\dilHermitepolyHe{n}@{x + y} &= \\sum_{k=0}^n \\binom{n}{k} x^{n-k} \\dilHermitepolyHe{k}@{y} & &= 2^{-\\frac n 2} \\sum_{k=0}^n \\binom{n}{k} \\dilHermitepolyHe{n-k}@{x \\sqrt 2} \\dilHermitepolyHe{k}@{y \\sqrt 2} , \\\\ \\HermitepolyH{n}@{x + y} &= \\sum_{k=0}^n \\binom{n}{k} \\HermitepolyH{k}@{x}(2 y)^{(n-k)} & &= 2^{-\\frac n 2} \\cdot \\sum_{k=0}^n \\binom{n}{k} \\HermitepolyH{n-k}@{x \\sqrt 2} \\HermitepolyH{k}@{y \\sqrt 2} .\\end{align}",
  "confidence" : 0.7053493154002186,
  "translations" : {
    "Mathematica" : {
      "translation" : "",
      "translationInformation" : {
        "tokenTranslations" : {
          "Error" : "(LaTeX -> Mathematica) No translation possible for given token: Cannot extract information from feature set: \\dilHermitepolyHe [\\dilHermitepolyHe]"
        }
      }
    },
    "SymPy" : {
      "translation" : "",
      "translationInformation" : {
        "tokenTranslations" : {
          "Error" : "(LaTeX -> SymPy) No translation possible for given token: Cannot extract information from feature set: \\dilHermitepolyHe [\\dilHermitepolyHe]"
        }
      }
    },
    "Maple" : {
      "translation" : "",
      "translationInformation" : {
        "tokenTranslations" : {
          "Error" : "(LaTeX -> Maple) No translation possible for given token: Cannot extract information from feature set: \\dilHermitepolyHe [\\dilHermitepolyHe]"
        }
      }
    }
  },
  "positions" : [ ],
  "includes" : [ "\\begin{align} \\mathit{He}_n(x+y) &= \\sum_{k=0}^n \\binom{n}{k}x^{n-k} \\mathit{He}_{k}(y)  &&= 2^{-\\frac n 2} \\sum_{k=0}^n \\binom{n}{k} \\mathit{He}_{n-k}\\left(x\\sqrt 2\\right) \\mathit{He}_k\\left(y\\sqrt 2\\right), \\\\ H_n(x+y) &= \\sum_{k=0}^n \\binom{n}{k}H_{k}(x) (2y)^{(n-k)}  &&= 2^{-\\frac n 2}\\cdot\\sum_{k=0}^n \\binom{n}{k} H_{n-k}\\left(x\\sqrt 2\\right) H_k\\left(y\\sqrt 2\\right).\\end{align}", "\\psi_{n}", "H_{n}(x)", "\\psi_{n}(x)", "k", "He", "x^{n}", "n", "x", "H_{n}", "H_\\lambda(x)", "He_{n}(x)", "H_{n}(y)", "He_{n}", "D_{n}(z)", "H", "x^{k}" ],
  "isPartOf" : [ "\\begin{align} \\mathit{He}_n(x+y) &= \\sum_{k=0}^n \\binom{n}{k}x^{n-k} \\mathit{He}_{k}(y)  &&= 2^{-\\frac n 2} \\sum_{k=0}^n \\binom{n}{k} \\mathit{He}_{n-k}\\left(x\\sqrt 2\\right) \\mathit{He}_k\\left(y\\sqrt 2\\right), \\\\ H_n(x+y) &= \\sum_{k=0}^n \\binom{n}{k}H_{k}(x) (2y)^{(n-k)}  &&= 2^{-\\frac n 2}\\cdot\\sum_{k=0}^n \\binom{n}{k} H_{n-k}\\left(x\\sqrt 2\\right) H_k\\left(y\\sqrt 2\\right).\\end{align}" ],
  "definiens" : [ ]
}

Specify your own input