LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle \frac{\left|PF_1\right|}{\left|Pl_1\right|} = \frac{\left|PF_2\right|}{\left|Pl_2\right|} = e = \frac{c}{a}\ .}

... is translated to the CAS output ...

Semantic latex: \frac{|PF_1|}{|Pl_1|} = \frac{|PF_2|}{|Pl_2|} = e = \frac{c}{a}

Confidence: 0

Mathematica

Translation: Divide[Abs[P*Subscript[F, 1]],Abs[P*Subscript[l, 1]]] == Divide[Abs[P*Subscript[F, 2]],Abs[P*Subscript[l, 2]]] == e == Divide[c,a]

Information

Sub Equations

  • Divide[Abs[P*Subscript[F, 1]],Abs[P*Subscript[l, 1]]] = Divide[Abs[P*Subscript[F, 2]],Abs[P*Subscript[l, 2]]]
  • Divide[Abs[P*Subscript[F, 2]],Abs[P*Subscript[l, 2]]] = e
  • e = Divide[c,a]

Free variables

  • P
  • Subscript[F, 1]
  • Subscript[F, 2]
  • Subscript[l, 1]
  • Subscript[l, 2]
  • a
  • c
  • e

Symbol info

  • You use a typical letter for a constant [the mathematical constant e == Napier's constant == 2.71828182845...].

We keep it like it is! But you should know that Mathematica uses E for this constant. If you want to translate it as a constant, use the corresponding DLMF macro \expe

Tests

Symbolic
Numeric

SymPy

Translation: (abs(P*Symbol('{F}_{1}')))/(abs(P*Symbol('{l}_{1}'))) == (abs(P*Symbol('{F}_{2}')))/(abs(P*Symbol('{l}_{2}'))) == e == (c)/(a)

Information

Sub Equations

  • (abs(P*Symbol('{F}_{1}')))/(abs(P*Symbol('{l}_{1}'))) = (abs(P*Symbol('{F}_{2}')))/(abs(P*Symbol('{l}_{2}')))
  • (abs(P*Symbol('{F}_{2}')))/(abs(P*Symbol('{l}_{2}'))) = e
  • e = (c)/(a)

Free variables

  • P
  • Symbol('{F}_{1}')
  • Symbol('{F}_{2}')
  • Symbol('{l}_{1}')
  • Symbol('{l}_{2}')
  • a
  • c
  • e

Symbol info

  • You use a typical letter for a constant [the mathematical constant e == Napier's constant == 2.71828182845...].

We keep it like it is! But you should know that SymPy uses E for this constant. If you want to translate it as a constant, use the corresponding DLMF macro \expe

Tests

Symbolic
Numeric

Maple

Translation: (abs(P*F[1]))/(abs(P*l[1])) = (abs(P*F[2]))/(abs(P*l[2])) = e = (c)/(a)

Information

Sub Equations

  • (abs(P*F[1]))/(abs(P*l[1])) = (abs(P*F[2]))/(abs(P*l[2]))
  • (abs(P*F[2]))/(abs(P*l[2])) = e
  • e = (c)/(a)

Free variables

  • F[1]
  • F[2]
  • P
  • a
  • c
  • e
  • l[1]
  • l[2]

Symbol info

  • You use a typical letter for a constant [the mathematical constant e == Napier's constant == 2.71828182845...].

We keep it like it is! But you should know that Maple uses exp(1) for this constant. If you want to translate it as a constant, use the corresponding DLMF macro \expe

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Is part of

Complete translation information:

{
  "id" : "FORMULA_13f333a642a44972533af1fe67d7557e",
  "formula" : "\\frac{\\left|PF_1\\right|}{\\left|Pl_1\\right|} = \\frac{\\left|PF_2\\right|}{\\left|Pl_2\\right|} = e = \\frac{c}{a}",
  "semanticFormula" : "\\frac{|PF_1|}{|Pl_1|} = \\frac{|PF_2|}{|Pl_2|} = e = \\frac{c}{a}",
  "confidence" : 0.0,
  "translations" : {
    "Mathematica" : {
      "translation" : "Divide[Abs[P*Subscript[F, 1]],Abs[P*Subscript[l, 1]]] == Divide[Abs[P*Subscript[F, 2]],Abs[P*Subscript[l, 2]]] == e == Divide[c,a]",
      "translationInformation" : {
        "subEquations" : [ "Divide[Abs[P*Subscript[F, 1]],Abs[P*Subscript[l, 1]]] = Divide[Abs[P*Subscript[F, 2]],Abs[P*Subscript[l, 2]]]", "Divide[Abs[P*Subscript[F, 2]],Abs[P*Subscript[l, 2]]] = e", "e = Divide[c,a]" ],
        "freeVariables" : [ "P", "Subscript[F, 1]", "Subscript[F, 2]", "Subscript[l, 1]", "Subscript[l, 2]", "a", "c", "e" ],
        "tokenTranslations" : {
          "e" : "You use a typical letter for a constant [the mathematical constant e == Napier's constant ==  2.71828182845...].\nWe keep it like it is! But you should know that Mathematica uses E for this constant.\nIf you want to translate it as a constant, use the corresponding DLMF macro \\expe\n"
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    },
    "SymPy" : {
      "translation" : "(abs(P*Symbol('{F}_{1}')))/(abs(P*Symbol('{l}_{1}'))) == (abs(P*Symbol('{F}_{2}')))/(abs(P*Symbol('{l}_{2}'))) == e == (c)/(a)",
      "translationInformation" : {
        "subEquations" : [ "(abs(P*Symbol('{F}_{1}')))/(abs(P*Symbol('{l}_{1}'))) = (abs(P*Symbol('{F}_{2}')))/(abs(P*Symbol('{l}_{2}')))", "(abs(P*Symbol('{F}_{2}')))/(abs(P*Symbol('{l}_{2}'))) = e", "e = (c)/(a)" ],
        "freeVariables" : [ "P", "Symbol('{F}_{1}')", "Symbol('{F}_{2}')", "Symbol('{l}_{1}')", "Symbol('{l}_{2}')", "a", "c", "e" ],
        "tokenTranslations" : {
          "e" : "You use a typical letter for a constant [the mathematical constant e == Napier's constant ==  2.71828182845...].\nWe keep it like it is! But you should know that SymPy uses E for this constant.\nIf you want to translate it as a constant, use the corresponding DLMF macro \\expe\n"
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    },
    "Maple" : {
      "translation" : "(abs(P*F[1]))/(abs(P*l[1])) = (abs(P*F[2]))/(abs(P*l[2])) = e = (c)/(a)",
      "translationInformation" : {
        "subEquations" : [ "(abs(P*F[1]))/(abs(P*l[1])) = (abs(P*F[2]))/(abs(P*l[2]))", "(abs(P*F[2]))/(abs(P*l[2])) = e", "e = (c)/(a)" ],
        "freeVariables" : [ "F[1]", "F[2]", "P", "a", "c", "e", "l[1]", "l[2]" ],
        "tokenTranslations" : {
          "e" : "You use a typical letter for a constant [the mathematical constant e == Napier's constant ==  2.71828182845...].\nWe keep it like it is! But you should know that Maple uses exp(1) for this constant.\nIf you want to translate it as a constant, use the corresponding DLMF macro \\expe\n"
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    }
  },
  "positions" : [ ],
  "includes" : [ "\\overline{PF_2}", "\\frac{\\left|PF_1\\right|}{\\left|Pl_1\\right|} = \\frac{\\left|PF_2\\right|}{\\left|Pl_2\\right|} = e = \\frac{c}{a}", "a", "e=\\tfrac{c}{a}", "e", "c" ],
  "isPartOf" : [ "\\frac{\\left|PF_1\\right|}{\\left|Pl_1\\right|} = \\frac{\\left|PF_2\\right|}{\\left|Pl_2\\right|} = e = \\frac{c}{a}" ],
  "definiens" : [ ]
}

Specify your own input