LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle \beta=q^{\beta}}

... is translated to the CAS output ...

Semantic latex: \beta=q^{\beta}

Confidence: 0

Mathematica

Translation: \[Beta] == (q)^\[Beta]

Information

Sub Equations

  • \[Beta] = (q)^\[Beta]

Free variables

  • \[Beta]
  • q

Tests

Symbolic

Test expression: (\[Beta])-((q)^\[Beta])

ERROR:

{
    "result": "ERROR",
    "testTitle": "Simple",
    "testExpression": null,
    "resultExpression": null,
    "wasAborted": false,
    "conditionallySuccessful": false
}
Numeric

SymPy

Translation: Symbol('beta') == (q)**(Symbol('beta'))

Information

Sub Equations

  • Symbol('beta') = (q)**(Symbol('beta'))

Free variables

  • Symbol('beta')
  • q

Tests

Symbolic
Numeric

Maple

Translation: beta = (q)^(beta)

Information

Sub Equations

  • beta = (q)^(beta)

Free variables

  • beta
  • q

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Is part of

Description

  • q-Hahn polynomial
  • Hahn polynomial
  • substitution
  • definition of q-Hahn polynomial
  • limit q
  • Quantum q-Krawtchouk polynomial

Complete translation information:

{
  "id" : "FORMULA_9d2db24e1c3a0fafdc641be0ec4b6652",
  "formula" : "\\beta=q^{\\beta}",
  "semanticFormula" : "\\beta=q^{\\beta}",
  "confidence" : 0.0,
  "translations" : {
    "Mathematica" : {
      "translation" : "\\[Beta] == (q)^\\[Beta]",
      "translationInformation" : {
        "subEquations" : [ "\\[Beta] = (q)^\\[Beta]" ],
        "freeVariables" : [ "\\[Beta]", "q" ]
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "ERROR",
        "numberOfTests" : 1,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 1,
        "crashed" : false,
        "testCalculationsGroup" : [ {
          "lhs" : "\\[Beta]",
          "rhs" : "(q)^\\[Beta]",
          "testExpression" : "(\\[Beta])-((q)^\\[Beta])",
          "testCalculations" : [ {
            "result" : "ERROR",
            "testTitle" : "Simple",
            "testExpression" : null,
            "resultExpression" : null,
            "wasAborted" : false,
            "conditionallySuccessful" : false
          } ]
        } ]
      }
    },
    "SymPy" : {
      "translation" : "Symbol('beta') == (q)**(Symbol('beta'))",
      "translationInformation" : {
        "subEquations" : [ "Symbol('beta') = (q)**(Symbol('beta'))" ],
        "freeVariables" : [ "Symbol('beta')", "q" ]
      }
    },
    "Maple" : {
      "translation" : "beta = (q)^(beta)",
      "translationInformation" : {
        "subEquations" : [ "beta = (q)^(beta)" ],
        "freeVariables" : [ "beta", "q" ]
      }
    }
  },
  "positions" : [ {
    "section" : 2,
    "sentence" : 0,
    "word" : 18
  } ],
  "includes" : [ "\\alpha=q^{\\alpha}" ],
  "isPartOf" : [ "\\alpha=q^{\\alpha}" ],
  "definiens" : [ {
    "definition" : "q-Hahn polynomial",
    "score" : 0.8335022225110844
  }, {
    "definition" : "Hahn polynomial",
    "score" : 0.8227064776126595
  }, {
    "definition" : "substitution",
    "score" : 0.7048095238095237
  }, {
    "definition" : "definition of q-Hahn polynomial",
    "score" : 0.6954080343007951
  }, {
    "definition" : "limit q",
    "score" : 0.6288842031023242
  }, {
    "definition" : "Quantum q-Krawtchouk polynomial",
    "score" : 0.6288842031023242
  } ]
}

Specify your own input