LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle \frac{d^k}{dz^k} P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+\beta+n+1+k)}{2^k \Gamma (\alpha+\beta+n+1)} P_{n-k}^{(\alpha+k, \beta+k)} (z).}

... is translated to the CAS output ...

Semantic latex: \deriv [k]{ }{z} \JacobipolyP{\alpha}{\beta}{n}@{z} = \frac{\EulerGamma@{\alpha + \beta + n + 1 + k}}{2^k \EulerGamma@{\alpha + \beta + n + 1}} \JacobipolyP{\alpha + k}{\beta + k}{n-k}@{z}

Confidence: 0.66135839569067

Mathematica

Translation: D[JacobiP[n, \[Alpha], \[Beta], z], {z, k}] == Divide[Gamma[\[Alpha]+ \[Beta]+ n + 1 + k],(2)^(k)* Gamma[\[Alpha]+ \[Beta]+ n + 1]]*JacobiP[n - k, \[Alpha]+ k, \[Beta]+ k, z]

Information

Sub Equations

  • D[JacobiP[n, \[Alpha], \[Beta], z], {z, k}] = Divide[Gamma[\[Alpha]+ \[Beta]+ n + 1 + k],(2)^(k)* Gamma[\[Alpha]+ \[Beta]+ n + 1]]*JacobiP[n - k, \[Alpha]+ k, \[Beta]+ k, z]

Free variables

  • \[Alpha]
  • \[Beta]
  • k
  • n
  • z

Symbol info

  • Jacobi polynomial; Example: \JacobipolyP{\alpha}{\beta}{n}@{x}

Will be translated to: JacobiP[$2, $0, $1, $3] Relevant links to definitions: DLMF: http://dlmf.nist.gov/18.3#T1.t1.r2 Mathematica: https://reference.wolfram.com/language/ref/JacobiP.html?q=JacobiP

  • Derivative; Example: \deriv[n]{f}{x}

Will be translated to: D[$1, {$2, $0}] Relevant links to definitions: DLMF: http://dlmf.nist.gov/1.4#E4 Mathematica: https://reference.wolfram.com/language/ref/D.html

  • Could be the second Feigenbaum constant.

But this system doesn't know how to translate it as a constant. It was translated as a general letter.

  • Euler Gamma function; Example: \EulerGamma@{z}

Will be translated to: Gamma[$0] Relevant links to definitions: DLMF: http://dlmf.nist.gov/5.2#E1 Mathematica: https://reference.wolfram.com/language/ref/Gamma.html

Tests

Symbolic

Test expression: (D[JacobiP[n, \[Alpha], \[Beta], z], {z, k}])-(Divide[Gamma[\[Alpha]+ \[Beta]+ n + 1 + k],(2)^(k)* Gamma[\[Alpha]+ \[Beta]+ n + 1]]*JacobiP[n - k, \[Alpha]+ k, \[Beta]+ k, z])

ERROR:

{
    "result": "ERROR",
    "testTitle": "Simple",
    "testExpression": null,
    "resultExpression": null,
    "wasAborted": false,
    "conditionallySuccessful": false
}
Numeric

SymPy

Translation:

Information

Symbol info

  • (LaTeX -> SymPy) No translation possible for given token: Cannot extract information from feature set: \EulerGamma [\EulerGamma]

Tests

Symbolic
Numeric

Maple

Translation: diff(JacobiP(n, alpha, beta, z), [z$(k)]) = (GAMMA(alpha + beta + n + 1 + k))/((2)^(k)* GAMMA(alpha + beta + n + 1))*JacobiP(n - k, alpha + k, beta + k, z)

Information

Sub Equations

  • diff(JacobiP(n, alpha, beta, z), [z$(k)]) = (GAMMA(alpha + beta + n + 1 + k))/((2)^(k)* GAMMA(alpha + beta + n + 1))*JacobiP(n - k, alpha + k, beta + k, z)

Free variables

  • alpha
  • beta
  • k
  • n
  • z

Symbol info

  • Jacobi polynomial; Example: \JacobipolyP{\alpha}{\beta}{n}@{x}

Will be translated to: JacobiP($2, $0, $1, $3) Relevant links to definitions: DLMF: http://dlmf.nist.gov/18.3#T1.t1.r2 Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=JacobiP

  • Derivative; Example: \deriv[n]{f}{x}

Will be translated to: diff($1, [$2$($0)]) Relevant links to definitions: DLMF: http://dlmf.nist.gov/1.4#E4 Maple: https://www.maplesoft.com/support/help/Maple/view.aspx?path=diff

  • Could be the second Feigenbaum constant.

But this system doesn't know how to translate it as a constant. It was translated as a general letter.

  • Euler Gamma function; Example: \EulerGamma@{z}

Will be translated to: GAMMA($0) Relevant links to definitions: DLMF: http://dlmf.nist.gov/5.2#E1 Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=GAMMA

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Description

  • derivative of the explicit expression

Complete translation information:

{
  "id" : "FORMULA_c1a5b2b20d5efff4922f26591d73e078",
  "formula" : "\\frac{d^k}{dz^k} P_n^{(\\alpha,\\beta)} (z) = \\frac{\\Gamma (\\alpha+\\beta+n+1+k)}{2^k \\Gamma (\\alpha+\\beta+n+1)} P_{n-k}^{(\\alpha+k, \\beta+k)} (z)",
  "semanticFormula" : "\\deriv [k]{ }{z} \\JacobipolyP{\\alpha}{\\beta}{n}@{z} = \\frac{\\EulerGamma@{\\alpha + \\beta + n + 1 + k}}{2^k \\EulerGamma@{\\alpha + \\beta + n + 1}} \\JacobipolyP{\\alpha + k}{\\beta + k}{n-k}@{z}",
  "confidence" : 0.6613583956906683,
  "translations" : {
    "Mathematica" : {
      "translation" : "D[JacobiP[n, \\[Alpha], \\[Beta], z], {z, k}] == Divide[Gamma[\\[Alpha]+ \\[Beta]+ n + 1 + k],(2)^(k)* Gamma[\\[Alpha]+ \\[Beta]+ n + 1]]*JacobiP[n - k, \\[Alpha]+ k, \\[Beta]+ k, z]",
      "translationInformation" : {
        "subEquations" : [ "D[JacobiP[n, \\[Alpha], \\[Beta], z], {z, k}] = Divide[Gamma[\\[Alpha]+ \\[Beta]+ n + 1 + k],(2)^(k)* Gamma[\\[Alpha]+ \\[Beta]+ n + 1]]*JacobiP[n - k, \\[Alpha]+ k, \\[Beta]+ k, z]" ],
        "freeVariables" : [ "\\[Alpha]", "\\[Beta]", "k", "n", "z" ],
        "tokenTranslations" : {
          "\\JacobipolyP" : "Jacobi polynomial; Example: \\JacobipolyP{\\alpha}{\\beta}{n}@{x}\nWill be translated to: JacobiP[$2, $0, $1, $3]\nRelevant links to definitions:\nDLMF:         http://dlmf.nist.gov/18.3#T1.t1.r2\nMathematica:  https://reference.wolfram.com/language/ref/JacobiP.html?q=JacobiP",
          "\\deriv1" : "Derivative; Example: \\deriv[n]{f}{x}\nWill be translated to: D[$1, {$2, $0}]\nRelevant links to definitions:\nDLMF:         http://dlmf.nist.gov/1.4#E4\nMathematica:  https://reference.wolfram.com/language/ref/D.html",
          "\\alpha" : "Could be the second Feigenbaum constant.\nBut this system doesn't know how to translate it as a constant. It was translated as a general letter.\n",
          "\\EulerGamma" : "Euler Gamma function; Example: \\EulerGamma@{z}\nWill be translated to: Gamma[$0]\nRelevant links to definitions:\nDLMF:         http://dlmf.nist.gov/5.2#E1\nMathematica:  https://reference.wolfram.com/language/ref/Gamma.html"
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "ERROR",
        "numberOfTests" : 1,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 1,
        "crashed" : false,
        "testCalculationsGroup" : [ {
          "lhs" : "D[JacobiP[n, \\[Alpha], \\[Beta], z], {z, k}]",
          "rhs" : "Divide[Gamma[\\[Alpha]+ \\[Beta]+ n + 1 + k],(2)^(k)* Gamma[\\[Alpha]+ \\[Beta]+ n + 1]]*JacobiP[n - k, \\[Alpha]+ k, \\[Beta]+ k, z]",
          "testExpression" : "(D[JacobiP[n, \\[Alpha], \\[Beta], z], {z, k}])-(Divide[Gamma[\\[Alpha]+ \\[Beta]+ n + 1 + k],(2)^(k)* Gamma[\\[Alpha]+ \\[Beta]+ n + 1]]*JacobiP[n - k, \\[Alpha]+ k, \\[Beta]+ k, z])",
          "testCalculations" : [ {
            "result" : "ERROR",
            "testTitle" : "Simple",
            "testExpression" : null,
            "resultExpression" : null,
            "wasAborted" : false,
            "conditionallySuccessful" : false
          } ]
        } ]
      }
    },
    "SymPy" : {
      "translation" : "",
      "translationInformation" : {
        "tokenTranslations" : {
          "Error" : "(LaTeX -> SymPy) No translation possible for given token: Cannot extract information from feature set: \\EulerGamma [\\EulerGamma]"
        }
      }
    },
    "Maple" : {
      "translation" : "diff(JacobiP(n, alpha, beta, z), [z$(k)]) = (GAMMA(alpha + beta + n + 1 + k))/((2)^(k)* GAMMA(alpha + beta + n + 1))*JacobiP(n - k, alpha + k, beta + k, z)",
      "translationInformation" : {
        "subEquations" : [ "diff(JacobiP(n, alpha, beta, z), [z$(k)]) = (GAMMA(alpha + beta + n + 1 + k))/((2)^(k)* GAMMA(alpha + beta + n + 1))*JacobiP(n - k, alpha + k, beta + k, z)" ],
        "freeVariables" : [ "alpha", "beta", "k", "n", "z" ],
        "tokenTranslations" : {
          "\\JacobipolyP" : "Jacobi polynomial; Example: \\JacobipolyP{\\alpha}{\\beta}{n}@{x}\nWill be translated to: JacobiP($2, $0, $1, $3)\nRelevant links to definitions:\nDLMF:  http://dlmf.nist.gov/18.3#T1.t1.r2\nMaple: https://www.maplesoft.com/support/help/maple/view.aspx?path=JacobiP",
          "\\deriv1" : "Derivative; Example: \\deriv[n]{f}{x}\nWill be translated to: diff($1, [$2$($0)])\nRelevant links to definitions:\nDLMF:  http://dlmf.nist.gov/1.4#E4\nMaple: https://www.maplesoft.com/support/help/Maple/view.aspx?path=diff",
          "\\alpha" : "Could be the second Feigenbaum constant.\nBut this system doesn't know how to translate it as a constant. It was translated as a general letter.\n",
          "\\EulerGamma" : "Euler Gamma function; Example: \\EulerGamma@{z}\nWill be translated to: GAMMA($0)\nRelevant links to definitions:\nDLMF:  http://dlmf.nist.gov/5.2#E1\nMaple: https://www.maplesoft.com/support/help/maple/view.aspx?path=GAMMA"
        }
      }
    }
  },
  "positions" : [ {
    "section" : 7,
    "sentence" : 0,
    "word" : 10
  } ],
  "includes" : [ "n + \\alpha + \\beta", "\\Gamma(z)", "n", "P_{n}^{(\\alpha, \\beta)}(x)", "k", "P_{n}^{(\\alpha, \\beta)}", "\\alpha,\\beta", "z" ],
  "isPartOf" : [ ],
  "definiens" : [ {
    "definition" : "derivative of the explicit expression",
    "score" : 0.6859086196238077
  } ]
}

Specify your own input