LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle P_2^{(\alpha,\beta)}(z)= \frac{(\alpha+1)(\alpha+2)}{2} + (\alpha+2)(\alpha+\beta+3)\frac{z-1}{2} + \frac{(\alpha+\beta+3)(\alpha+\beta+4)}{2}\left(\frac{z-1}{2}\right)^2,...}

... is translated to the CAS output ...

Semantic latex: \JacobipolyP{\alpha}{\beta}{2}@{z} = \frac{(\alpha+1)(\alpha+2)}{2} +(\alpha + 2)(\alpha + \beta + 3) \frac{z-1}{2} + \frac{(\alpha+\beta+3)(\alpha+\beta+4)}{2}(\frac{z-1}{2})^2 ,

Confidence: 0.65633676869532

Mathematica

Translation: JacobiP[2, \[Alpha], \[Beta], z] == Divide[(\[Alpha]+ 1)*(\[Alpha]+ 2),2]+(\[Alpha]+ 2)*(\[Alpha]+ \[Beta]+ 3)*Divide[z - 1,2]+Divide[(\[Alpha]+ \[Beta]+ 3)*(\[Alpha]+ \[Beta]+ 4),2]*(Divide[z - 1,2])^(2)

Information

Sub Equations

  • JacobiP[2, \[Alpha], \[Beta], z] = Divide[(\[Alpha]+ 1)*(\[Alpha]+ 2),2]+(\[Alpha]+ 2)*(\[Alpha]+ \[Beta]+ 3)*Divide[z - 1,2]+Divide[(\[Alpha]+ \[Beta]+ 3)*(\[Alpha]+ \[Beta]+ 4),2]*(Divide[z - 1,2])^(2)

Free variables

  • \[Alpha]
  • \[Beta]
  • z

Symbol info

  • Jacobi polynomial; Example: \JacobipolyP{\alpha}{\beta}{n}@{x}

Will be translated to: JacobiP[$2, $0, $1, $3] Relevant links to definitions: DLMF: http://dlmf.nist.gov/18.3#T1.t1.r2 Mathematica: https://reference.wolfram.com/language/ref/JacobiP.html?q=JacobiP

  • Could be the second Feigenbaum constant.

But this system doesn't know how to translate it as a constant. It was translated as a general letter.

Tests

Symbolic

Test expression: (JacobiP[2, \[Alpha], \[Beta], z])-(Divide[(\[Alpha]+ 1)*(\[Alpha]+ 2),2]+(\[Alpha]+ 2)*(\[Alpha]+ \[Beta]+ 3)*Divide[z - 1,2]+Divide[(\[Alpha]+ \[Beta]+ 3)*(\[Alpha]+ \[Beta]+ 4),2]*(Divide[z - 1,2])^(2))

ERROR:

{
    "result": "ERROR",
    "testTitle": "Simple",
    "testExpression": null,
    "resultExpression": null,
    "wasAborted": false,
    "conditionallySuccessful": false
}
Numeric

SymPy

Translation: jacobi(2, Symbol('alpha'), Symbol('beta'), z) == ((Symbol('alpha')+ 1)*(Symbol('alpha')+ 2))/(2)+(Symbol('alpha')+ 2)*(Symbol('alpha')+ Symbol('beta')+ 3)*(z - 1)/(2)+((Symbol('alpha')+ Symbol('beta')+ 3)*(Symbol('alpha')+ Symbol('beta')+ 4))/(2)*((z - 1)/(2))**(2)

Information

Sub Equations

  • jacobi(2, Symbol('alpha'), Symbol('beta'), z) = ((Symbol('alpha')+ 1)*(Symbol('alpha')+ 2))/(2)+(Symbol('alpha')+ 2)*(Symbol('alpha')+ Symbol('beta')+ 3)*(z - 1)/(2)+((Symbol('alpha')+ Symbol('beta')+ 3)*(Symbol('alpha')+ Symbol('beta')+ 4))/(2)*((z - 1)/(2))**(2)

Free variables

  • Symbol('alpha')
  • Symbol('beta')
  • z

Symbol info

  • Jacobi polynomial; Example: \JacobipolyP{\alpha}{\beta}{n}@{x}

Will be translated to: jacobi($2, $0, $1, $3) Relevant links to definitions: DLMF: http://dlmf.nist.gov/18.3#T1.t1.r2 SymPy: https://docs.sympy.org/latest/modules/functions/special.html#jacobi-polynomials

  • Could be the second Feigenbaum constant.

But this system doesn't know how to translate it as a constant. It was translated as a general letter.

Tests

Symbolic
Numeric

Maple

Translation: JacobiP(2, alpha, beta, z) = ((alpha + 1)*(alpha + 2))/(2)+(alpha + 2)*(alpha + beta + 3)*(z - 1)/(2)+((alpha + beta + 3)*(alpha + beta + 4))/(2)*((z - 1)/(2))^(2)

Information

Sub Equations

  • JacobiP(2, alpha, beta, z) = ((alpha + 1)*(alpha + 2))/(2)+(alpha + 2)*(alpha + beta + 3)*(z - 1)/(2)+((alpha + beta + 3)*(alpha + beta + 4))/(2)*((z - 1)/(2))^(2)

Free variables

  • alpha
  • beta
  • z

Symbol info

  • Jacobi polynomial; Example: \JacobipolyP{\alpha}{\beta}{n}@{x}

Will be translated to: JacobiP($2, $0, $1, $3) Relevant links to definitions: DLMF: http://dlmf.nist.gov/18.3#T1.t1.r2 Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=JacobiP

  • Could be the second Feigenbaum constant.

But this system doesn't know how to translate it as a constant. It was translated as a general letter.

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Complete translation information:

{
  "id" : "FORMULA_2456d8e10ee48d46d597e731c07db9d1",
  "formula" : "P_2^{(\\alpha,\\beta)}(z)= \\frac{(\\alpha+1)(\\alpha+2)}{2}\n+ (\\alpha+2)(\\alpha+\\beta+3)\\frac{z-1}{2}\n\n+ \\frac{(\\alpha+\\beta+3)(\\alpha+\\beta+4)}{2}\\left(\\frac{z-1}{2}\\right)^2,",
  "semanticFormula" : "\\JacobipolyP{\\alpha}{\\beta}{2}@{z} = \\frac{(\\alpha+1)(\\alpha+2)}{2} +(\\alpha + 2)(\\alpha + \\beta + 3) \\frac{z-1}{2} + \\frac{(\\alpha+\\beta+3)(\\alpha+\\beta+4)}{2}(\\frac{z-1}{2})^2 ,",
  "confidence" : 0.6563367686953199,
  "translations" : {
    "Mathematica" : {
      "translation" : "JacobiP[2, \\[Alpha], \\[Beta], z] == Divide[(\\[Alpha]+ 1)*(\\[Alpha]+ 2),2]+(\\[Alpha]+ 2)*(\\[Alpha]+ \\[Beta]+ 3)*Divide[z - 1,2]+Divide[(\\[Alpha]+ \\[Beta]+ 3)*(\\[Alpha]+ \\[Beta]+ 4),2]*(Divide[z - 1,2])^(2)",
      "translationInformation" : {
        "subEquations" : [ "JacobiP[2, \\[Alpha], \\[Beta], z] = Divide[(\\[Alpha]+ 1)*(\\[Alpha]+ 2),2]+(\\[Alpha]+ 2)*(\\[Alpha]+ \\[Beta]+ 3)*Divide[z - 1,2]+Divide[(\\[Alpha]+ \\[Beta]+ 3)*(\\[Alpha]+ \\[Beta]+ 4),2]*(Divide[z - 1,2])^(2)" ],
        "freeVariables" : [ "\\[Alpha]", "\\[Beta]", "z" ],
        "tokenTranslations" : {
          "\\JacobipolyP" : "Jacobi polynomial; Example: \\JacobipolyP{\\alpha}{\\beta}{n}@{x}\nWill be translated to: JacobiP[$2, $0, $1, $3]\nRelevant links to definitions:\nDLMF:         http://dlmf.nist.gov/18.3#T1.t1.r2\nMathematica:  https://reference.wolfram.com/language/ref/JacobiP.html?q=JacobiP",
          "\\alpha" : "Could be the second Feigenbaum constant.\nBut this system doesn't know how to translate it as a constant. It was translated as a general letter.\n"
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "ERROR",
        "numberOfTests" : 1,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 1,
        "crashed" : false,
        "testCalculationsGroup" : [ {
          "lhs" : "JacobiP[2, \\[Alpha], \\[Beta], z]",
          "rhs" : "Divide[(\\[Alpha]+ 1)*(\\[Alpha]+ 2),2]+(\\[Alpha]+ 2)*(\\[Alpha]+ \\[Beta]+ 3)*Divide[z - 1,2]+Divide[(\\[Alpha]+ \\[Beta]+ 3)*(\\[Alpha]+ \\[Beta]+ 4),2]*(Divide[z - 1,2])^(2)",
          "testExpression" : "(JacobiP[2, \\[Alpha], \\[Beta], z])-(Divide[(\\[Alpha]+ 1)*(\\[Alpha]+ 2),2]+(\\[Alpha]+ 2)*(\\[Alpha]+ \\[Beta]+ 3)*Divide[z - 1,2]+Divide[(\\[Alpha]+ \\[Beta]+ 3)*(\\[Alpha]+ \\[Beta]+ 4),2]*(Divide[z - 1,2])^(2))",
          "testCalculations" : [ {
            "result" : "ERROR",
            "testTitle" : "Simple",
            "testExpression" : null,
            "resultExpression" : null,
            "wasAborted" : false,
            "conditionallySuccessful" : false
          } ]
        } ]
      }
    },
    "SymPy" : {
      "translation" : "jacobi(2, Symbol('alpha'), Symbol('beta'), z) == ((Symbol('alpha')+ 1)*(Symbol('alpha')+ 2))/(2)+(Symbol('alpha')+ 2)*(Symbol('alpha')+ Symbol('beta')+ 3)*(z - 1)/(2)+((Symbol('alpha')+ Symbol('beta')+ 3)*(Symbol('alpha')+ Symbol('beta')+ 4))/(2)*((z - 1)/(2))**(2)",
      "translationInformation" : {
        "subEquations" : [ "jacobi(2, Symbol('alpha'), Symbol('beta'), z) = ((Symbol('alpha')+ 1)*(Symbol('alpha')+ 2))/(2)+(Symbol('alpha')+ 2)*(Symbol('alpha')+ Symbol('beta')+ 3)*(z - 1)/(2)+((Symbol('alpha')+ Symbol('beta')+ 3)*(Symbol('alpha')+ Symbol('beta')+ 4))/(2)*((z - 1)/(2))**(2)" ],
        "freeVariables" : [ "Symbol('alpha')", "Symbol('beta')", "z" ],
        "tokenTranslations" : {
          "\\JacobipolyP" : "Jacobi polynomial; Example: \\JacobipolyP{\\alpha}{\\beta}{n}@{x}\nWill be translated to: jacobi($2, $0, $1, $3)\nRelevant links to definitions:\nDLMF:  http://dlmf.nist.gov/18.3#T1.t1.r2\nSymPy: https://docs.sympy.org/latest/modules/functions/special.html#jacobi-polynomials",
          "\\alpha" : "Could be the second Feigenbaum constant.\nBut this system doesn't know how to translate it as a constant. It was translated as a general letter.\n"
        }
      }
    },
    "Maple" : {
      "translation" : "JacobiP(2, alpha, beta, z) = ((alpha + 1)*(alpha + 2))/(2)+(alpha + 2)*(alpha + beta + 3)*(z - 1)/(2)+((alpha + beta + 3)*(alpha + beta + 4))/(2)*((z - 1)/(2))^(2)",
      "translationInformation" : {
        "subEquations" : [ "JacobiP(2, alpha, beta, z) = ((alpha + 1)*(alpha + 2))/(2)+(alpha + 2)*(alpha + beta + 3)*(z - 1)/(2)+((alpha + beta + 3)*(alpha + beta + 4))/(2)*((z - 1)/(2))^(2)" ],
        "freeVariables" : [ "alpha", "beta", "z" ],
        "tokenTranslations" : {
          "\\JacobipolyP" : "Jacobi polynomial; Example: \\JacobipolyP{\\alpha}{\\beta}{n}@{x}\nWill be translated to: JacobiP($2, $0, $1, $3)\nRelevant links to definitions:\nDLMF:  http://dlmf.nist.gov/18.3#T1.t1.r2\nMaple: https://www.maplesoft.com/support/help/maple/view.aspx?path=JacobiP",
          "\\alpha" : "Could be the second Feigenbaum constant.\nBut this system doesn't know how to translate it as a constant. It was translated as a general letter.\n"
        }
      }
    }
  },
  "positions" : [ ],
  "includes" : [ "z", "\\alpha,\\beta", "P_{n}^{(\\alpha, \\beta)}", "P_2^{(\\alpha,\\beta)}(z)= \\frac{(\\alpha+1)(\\alpha+2)}{2}+ (\\alpha+2)(\\alpha+\\beta+3)\\frac{z-1}{2}+ \\frac{(\\alpha+\\beta+3)(\\alpha+\\beta+4)}{2}\\left(\\frac{z-1}{2}\\right)^2,..", "P_{n}^{(\\alpha, \\beta)}(x)" ],
  "isPartOf" : [ ],
  "definiens" : [ ]
}

Specify your own input