LaTeX to CAS translator

Jump to navigation Jump to search

This mockup demonstrates the concept of TeX to Computer Algebra System (CAS) conversion.

The demo-application converts LaTeX functions which directly translate to CAS counterparts.

Functions without explicit CAS support are available for translation via a DRMF package (under development).

The following LaTeX input ...

{\displaystyle \begin{align} (q-1)^{i} {n \choose i} \mathcal{K}_k(i;n,q) = (q-1)^{k}{n \choose k} \mathcal{K}_i(k;n,q). \end{align}}

... is translated to the CAS output ...

Semantic latex: \begin{align} (q-1)^{i} {n \choose i} \mathcal{K}_k(i;n,q) = (q-1)^{k}{n \choose k} \mathcal{K}_i(k;n,q). \end{align}

Confidence: 0

Mathematica

Translation: (q - 1)^(i)*Binomial[n,i]*Subscript[K, k][i ; n , q] == (q - 1)^(k)*Binomial[n,k]*Subscript[K, i][k ; n , q]

Information

Sub Equations

  • (q - 1)^(i)*Binomial[n,i]*Subscript[K, k][i ; n , q] = (q - 1)^(k)*Binomial[n,k]*Subscript[K, i][k ; n , q]

Free variables

  • i
  • k
  • n
  • q

Symbol info

  • You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Mathematica uses I for this constant. If you want to translate it as a constant, use the corresponding DLMF macro \iunit

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).

Tests

Symbolic
Numeric

SymPy

Translation: (q - 1)**(i)*binomial(n,i)*Symbol('{K}_{k}')(i ; n , q) == (q - 1)**(k)*binomial(n,k)*Symbol('{K}_{i}')(k ; n , q)

Information

Sub Equations

  • (q - 1)**(i)*binomial(n,i)*Symbol('{K}_{k}')(i ; n , q) = (q - 1)**(k)*binomial(n,k)*Symbol('{K}_{i}')(k ; n , q)

Free variables

  • i
  • k
  • n
  • q

Symbol info

  • You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that SymPy uses I for this constant. If you want to translate it as a constant, use the corresponding DLMF macro \iunit

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).

Tests

Symbolic
Numeric

Maple

Translation: (q - 1)^(i)*binomial(n,i)*K[k](i ; n , q) = (q - 1)^(k)*binomial(n,k)*K[i](k ; n , q)

Information

Sub Equations

  • (q - 1)^(i)*binomial(n,i)*K[k](i ; n , q) = (q - 1)^(k)*binomial(n,k)*K[i](k ; n , q)

Free variables

  • i
  • k
  • n
  • q

Symbol info

  • You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Maple uses I for this constant. If you want to translate it as a constant, use the corresponding DLMF macro \iunit

  • Function without DLMF-Definition. We keep it like it is (but delete prefix \ if necessary).

Tests

Symbolic
Numeric

Dependency Graph Information

Includes

Is part of

Complete translation information:

{
  "id" : "FORMULA_8f308b190c7e5c338c243ff268aa0a39",
  "formula" : "\\begin{align}\n(q-1)^{i} {n \\choose i} \\mathcal{K}_k(i;n,q) = (q-1)^{k}{n \\choose k} \\mathcal{K}_i(k;n,q).\n\\end{align}",
  "semanticFormula" : "\\begin{align}\n(q-1)^{i} {n \\choose i} \\mathcal{K}_k(i;n,q) = (q-1)^{k}{n \\choose k} \\mathcal{K}_i(k;n,q).\n\\end{align}",
  "confidence" : 0.0,
  "translations" : {
    "Mathematica" : {
      "translation" : "(q - 1)^(i)*Binomial[n,i]*Subscript[K, k][i ; n , q] == (q - 1)^(k)*Binomial[n,k]*Subscript[K, i][k ; n , q]",
      "translationInformation" : {
        "subEquations" : [ "(q - 1)^(i)*Binomial[n,i]*Subscript[K, k][i ; n , q] = (q - 1)^(k)*Binomial[n,k]*Subscript[K, i][k ; n , q]" ],
        "freeVariables" : [ "i", "k", "n", "q" ],
        "tokenTranslations" : {
          "i" : "You use a typical letter for a constant [the imaginary unit == the principal square root of -1].\nWe keep it like it is! But you should know that Mathematica uses I for this constant.\nIf you want to translate it as a constant, use the corresponding DLMF macro \\iunit\n",
          "K" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary)."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    },
    "SymPy" : {
      "translation" : "(q - 1)**(i)*binomial(n,i)*Symbol('{K}_{k}')(i ; n , q) == (q - 1)**(k)*binomial(n,k)*Symbol('{K}_{i}')(k ; n , q)",
      "translationInformation" : {
        "subEquations" : [ "(q - 1)**(i)*binomial(n,i)*Symbol('{K}_{k}')(i ; n , q) = (q - 1)**(k)*binomial(n,k)*Symbol('{K}_{i}')(k ; n , q)" ],
        "freeVariables" : [ "i", "k", "n", "q" ],
        "tokenTranslations" : {
          "i" : "You use a typical letter for a constant [the imaginary unit == the principal square root of -1].\nWe keep it like it is! But you should know that SymPy uses I for this constant.\nIf you want to translate it as a constant, use the corresponding DLMF macro \\iunit\n",
          "K" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary)."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    },
    "Maple" : {
      "translation" : "(q - 1)^(i)*binomial(n,i)*K[k](i ; n , q) = (q - 1)^(k)*binomial(n,k)*K[i](k ; n , q)",
      "translationInformation" : {
        "subEquations" : [ "(q - 1)^(i)*binomial(n,i)*K[k](i ; n , q) = (q - 1)^(k)*binomial(n,k)*K[i](k ; n , q)" ],
        "freeVariables" : [ "i", "k", "n", "q" ],
        "tokenTranslations" : {
          "i" : "You use a typical letter for a constant [the imaginary unit == the principal square root of -1].\nWe keep it like it is! But you should know that Maple uses I for this constant.\nIf you want to translate it as a constant, use the corresponding DLMF macro \\iunit\n",
          "K" : "Function without DLMF-Definition. We keep it like it is (but delete prefix \\ if necessary)."
        }
      },
      "numericResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "wasAborted" : false,
        "crashed" : false,
        "testCalculationsGroups" : [ ]
      },
      "symbolicResults" : {
        "overallResult" : "SKIPPED",
        "numberOfTests" : 0,
        "numberOfFailedTests" : 0,
        "numberOfSuccessfulTests" : 0,
        "numberOfSkippedTests" : 0,
        "numberOfErrorTests" : 0,
        "crashed" : false,
        "testCalculationsGroup" : [ ]
      }
    }
  },
  "positions" : [ ],
  "includes" : [ "q", "\\begin{align}(q-1)^{i} {n \\choose i} \\mathcal{K}_k(i;n,q) = (q-1)^{k}{n \\choose k} \\mathcal{K}_i(k;n,q).\\end{align}", "n" ],
  "isPartOf" : [ "\\begin{align}(q-1)^{i} {n \\choose i} \\mathcal{K}_k(i;n,q) = (q-1)^{k}{n \\choose k} \\mathcal{K}_i(k;n,q).\\end{align}" ],
  "definiens" : [ ]
}

Specify your own input