Gold 91
Continuous q-Hermite polynomials
- Gold ID
- 91
- Link
- https://sigir21.wmflabs.org/wiki/Continuous_q-Hermite_polynomials#math.150.3
- Formula
- TeX Source
\sum_{n=0}^\infty H_n(x \mid q) \frac{t^n}{(q;q)_n} = \frac{1}{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty}
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- | - |
Semantic LaTeX
- Translation
\sum_{n=0}^\infty \HermitepolyH{n}@{x \mid q} \frac{t^n}{(q;q)_n} = \frac{1}{(t \expe^{\iunit \theta} , t \expe^{- \iunit \theta} ; q)_\infty}
- Expected (Gold Entry)
\sum_{n=0}^\infty \contqHermitepolyH{n}@{x}{q} \frac{t^n}{\qmultiPochhammersym{q}{q}{n}} = \frac{1}{\qmultiPochhammersym{t \expe^{\iunit \theta} , t \expe^{- \iunit \theta}}{q}{\infty}}
Mathematica
- Translation
- Expected (Gold Entry)
Maple
- Translation
- Expected (Gold Entry)