Gold 86

From LaTeX CAS translator demo
Revision as of 13:36, 1 September 2021 by Admin (talk | contribs) (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Little q-Laguerre polynomials

Gold ID
86
Link
https://sigir21.wmflabs.org/wiki/Little_q-Laguerre_polynomials#math.142.0
Formula
pn(x;a|q)=2ϕ1(qn,0;aq;q,qx)=1(a1qn;q)n2ϕ0(qn,x1;;q,x/a)
TeX Source
\displaystyle p_n(x;a|q) = {}_2\phi_1(q^{-n},0;aq;q,qx) = \frac{1}{(a^{-1}q^{-n};q)_n}{}_2\phi_0(q^{-n},x^{-1};;q,x/a)
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No -

Semantic LaTeX

Translation
p_n(x ; a|q) = \qgenhyperphi{2}{1}@{q^{-n} , 0}{aq}{q}{qx} = \frac{1}{\qmultiPochhammersym{a^{-1} q^{-n}}{q}{n}}{}_2 \phi_0(q^{-n} , x^{-1} ; ; q , x / a)
Expected (Gold Entry)
p_n(x ; a|q) = \qgenhyperphi{2}{1}@{q^{-n} , 0}{aq}{q}{qx} = \frac{1}{\qmultiPochhammersym{a^{-1} q^{-n}}{q}{n}} \qgenhyperphi{2}{0}@{q^{-n} , x^{-1}}{}{q}{x/a}


Mathematica

Translation
Expected (Gold Entry)
p[n_, x_, a_, q_] := QHypergeometricPFQ[{(q)^(- n), 0},{a*q},q,q*x] == Divide[1,Product[QPochhammer[Part[{(a)^(- 1)* (q)^(- n)},i],q,n],{i,1,Length[{(a)^(- 1)* (q)^(- n)}]}]]*QHypergeometricPFQ[{(q)^(- n), (x)^(- 1)},{},q,x/a]


Maple

Translation
Expected (Gold Entry)