Gold 83
Big q-Laguerre polynomials
- Gold ID
- 83
- Link
- https://sigir21.wmflabs.org/wiki/Big_q-Laguerre_polynomials#math.137.0
- Formula
- TeX Source
P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b})
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- |
Semantic LaTeX
- Translation
P_n(x;a,b;q)=\frac{1}{(b^{-1}*q^{-n};q,n)}*_2\Phi_1(q^{-n},aqx^{-1};aq|q;\frac{x}{b})
- Expected (Gold Entry)
P_n(x;a,b;q) =\frac{1}{\qmultiPochhammersym{b^{-1}*q^{-n}}{q}{n}} * \qgenhyperphi{2}{1}@{q^{-n},aqx^{-1}}{aq}{q}{\frac{x}{b}}
Mathematica
- Translation
- Expected (Gold Entry)
P[n_, x_, a_, b_, q_] := Divide[1,Product[QPochhammer[Part[{(b)^(- 1)* (q)^(- n)},i],q,n],{i,1,Length[{(b)^(- 1)* (q)^(- n)}]}]]* QHypergeometricPFQ[{(q)^(- n), a*q*(x)^(- 1)},{a*q},q,Divide[x,b]]
Maple
- Translation
- Expected (Gold Entry)