Gold 74

From LaTeX CAS translator demo
Revision as of 13:36, 1 September 2021 by Admin (talk | contribs) (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Dual Hahn polynomials

Gold ID
74
Link
https://sigir21.wmflabs.org/wiki/Dual_Hahn_polynomials#math.126.7
Formula
s=ab1wn(c)(s,a,b)wm(c)(s,a,b)ρ(s)[Δx(s12)]=δnmdn2
TeX Source
\sum^{b-1}_{s=a}w_n^{(c)}(s,a,b)w_m^{(c)}(s,a,b)\rho(s)[\Delta x(s-\frac{1}{2}) ]=\delta_{nm}d_n^2
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No - -

Semantic LaTeX

Translation
\sum_{s=a}^{b-1} w_n^{(c)}(s , a , b) w_m^{(c)}(s , a , b) \rho(s) [\Delta x(s - \frac{1}{2})] = \delta_{nm} d_n^2
Expected (Gold Entry)
\sum_{s=a}^{b-1} \dualHahnpolyR{n}@{c}{s}{a}{b} \dualHahnpolyR{m}@{c}{s}{a}{b} \rho(s) [\Delta x(s - \frac{1}{2})] = \delta_{nm} d_n^2


Mathematica

Translation
Sum[w[(Subscript[w, n])^(c)]*(s , a , b)*w[(Subscript[w, m])^(c)]*(s , a , b)*\[Rho][s]*(\[CapitalDelta]*x*(s -Divide[1,2])), {s, a, b - 1}, GenerateConditions->None] == Subscript[\[Delta], n, m]*(Subscript[d, n])^(2)
Expected (Gold Entry)


Maple

Translation
sum(w((w[n])^(c))*(s , a , b)*w((w[m])^(c))*(s , a , b)*rho(s)*(Delta*x*(s -(1)/(2))), s = a..b - 1) = delta[n, m]*(d[n])^(2)
Expected (Gold Entry)