Gold 63
Q-Charlier polynomials
- Gold ID
- 63
- Link
- https://sigir21.wmflabs.org/wiki/Q-Charlier_polynomials#math.115.0
- Formula
- TeX Source
\displaystyle c_n(q^{-x};a;q) = {}_2\phi_1(q^{-n},q^{-x};0;q,-q^{n+1}/a)
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- | - |
Semantic LaTeX
- Translation
c_n(q^{-x} ; a ; q) = \qgenhyperphi{2}{1}@{q^{-n} , q^{-x}}{0}{q}{- q^{n+1} / a}
- Expected (Gold Entry)
c_n(q^{-x} ; a ; q) = \qgenhyperphi{2}{1}@{q^{-n} , q^{-x}}{0}{q}{- q^{n+1} / a}
Mathematica
- Translation
Subscript[c, n][(q)^(- x); a ; q] == QHypergeometricPFQ[{(q)^(- n), (q)^(- x)},{0},q,- (q)^(n + 1)/a]
- Expected (Gold Entry)
Maple
- Translation
- Expected (Gold Entry)