Gold 51
Kravchuk polynomials
- Gold ID
- 51
- Link
- https://sigir21.wmflabs.org/wiki/Kravchuk_polynomials#math.102.5
- Formula
- TeX Source
\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- |
Semantic LaTeX
- Translation
\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}
- Expected (Gold Entry)
\KrawtchoukpolyK{k}@{x}{n}{q} = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}
Mathematica
- Translation
Subscript[\[CapitalKappa], k][x ; n , q] == Sum[(- q)^(j)*(q - 1)^(k - j)*Binomial[n - j,k - j]*Binomial[x,j], {j, 0, k}, GenerateConditions->None]
- Expected (Gold Entry)
K[k_, x_, n_, q_] := Sum[(- q)^(j)*(q - 1)^(k - j)*Binomial[n - j,k - j]*Binomial[x,j], {j, 0, k}]
Maple
- Translation
Kappa[k](x ; n , q) = sum((- q)^(j)*(q - 1)^(k - j)*binomial(n - j,k - j)*binomial(x,j), j = 0..k)
- Expected (Gold Entry)