Gold 51

From LaTeX CAS translator demo
Revision as of 13:35, 1 September 2021 by Admin (talk | contribs) (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Kravchuk polynomials

Gold ID
51
Link
https://sigir21.wmflabs.org/wiki/Kravchuk_polynomials#math.102.5
Formula
𝒦k(x;n,q)=j=0k(q)j(q1)kj(njkj)(xj)
TeX Source
\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
No No -

Semantic LaTeX

Translation
\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}
Expected (Gold Entry)
\KrawtchoukpolyK{k}@{x}{n}{q} = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}


Mathematica

Translation
Subscript[\[CapitalKappa], k][x ; n , q] == Sum[(- q)^(j)*(q - 1)^(k - j)*Binomial[n - j,k - j]*Binomial[x,j], {j, 0, k}, GenerateConditions->None]
Expected (Gold Entry)
K[k_, x_, n_, q_] := Sum[(- q)^(j)*(q - 1)^(k - j)*Binomial[n - j,k - j]*Binomial[x,j], {j, 0, k}]


Maple

Translation
Kappa[k](x ; n , q) = sum((- q)^(j)*(q - 1)^(k - j)*binomial(n - j,k - j)*binomial(x,j), j = 0..k)
Expected (Gold Entry)