Gold 48
3-j symbol
- Gold ID
- 48
- Link
- https://sigir21.wmflabs.org/wiki/3-j_symbol#math.99.30
- Formula
- TeX Source
\begin{pmatrix} j \\ m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix} j & 0 & j \\ m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'}
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- |
Semantic LaTeX
- Translation
\begin{pmatrix} j \\ m \quad m'\end{pmatrix} : = \sqrt{2 j + 1} \Wignerthreejsym{j}{0}{j}{m}{0}{m'} =(- 1)^{j - m'} \delta_{m, -m'}
- Expected (Gold Entry)
\begin{pmatrix} j \\ m \quad m'\end{pmatrix}:= \sqrt{2 j + 1}\begin{pmatrix} j & 0 & j \\ m & 0 & m'\end{pmatrix}= (-1)^{j - m'} \delta_{m, -m'}
Mathematica
- Translation
- Expected (Gold Entry)
Wigner[j_, m_, m\[Prime]_] := Sqrt[2*j+1] * {{j, 0, j}, {m, 0, m\[Prime]}} = (-1)^(j-m\[Prime])*Subscript[\[Delta], m, -m\[Prime]]
Maple
- Translation
- Expected (Gold Entry)