Gold 44
Basic hypergeometric series
- Gold ID
- 44
- Link
- https://sigir21.wmflabs.org/wiki/Basic_hypergeometric_series#math.94.4
- Formula
- TeX Source
\lim_{q\to 1}\;_{j}\phi_k \left[\begin{matrix} q^{a_1} & q^{a_2} & \ldots & q^{a_j} \\ q^{b_1} & q^{b_2} & \ldots & q^{b_k} \end{matrix} ; q,(q-1)^{1+k-j} z \right]=\;_{j}F_k \left[\begin{matrix} a_1 & a_2 & \ldots & a_j \\ b_1 & b_2 & \ldots & b_k \end{matrix} ;z \right]
Translation Results | ||
---|---|---|
Semantic LaTeX | Mathematica Translation | Maple Translations |
- | - |
Semantic LaTeX
- Translation
\lim_{q\to 1}_{j} \phi_k [\begin{matrix} q^{a_1} & q^{a_2} & \ldots & q^{a_j} \\ q^{b_1} & q^{b_2} & \ldots & q^{b_k} \end{matrix} ; q ,(q - 1)^{1+k-j} z] =_{j} F_k [\begin{matrix} a_1 & a_2 & \ldots & a_j \\ b_1 & b_2 & \ldots & b_k \end{matrix} ; z]
- Expected (Gold Entry)
\lim_{q\to 1} \qgenhyperphi{j}{k}@{q^{a_1} , q^{a_2} , \ldots , q^{a_j}}{q^{b_1} , q^{b_2} , \ldots , q^{b_k}}{q}{(q - 1)^{1+k-j} z} = \genhyperF{j}{k}@{a_1 , a_2 , \ldots , a_j}{b_1 , b_2 , \ldots , b_k}{z}
Mathematica
- Translation
- Expected (Gold Entry)
Maple
- Translation
- Expected (Gold Entry)