Gold 11

From LaTeX CAS translator demo
Revision as of 13:34, 1 September 2021 by Admin (talk | contribs) (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Error function

Gold ID
11
Link
https://sigir21.wmflabs.org/wiki/Error_function#math.61.27
Formula
erf(k)(z)=2(1)k1πHk1(z)ez2=2πdk1dzk1(ez2),k=1,2,
TeX Source
\operatorname{erf}^{(k)}(z) = \frac{2 (-1)^{k-1}}{\sqrt{\pi}} \mathit{H}_{k-1}(z) e^{-z^2} = \frac{2}{\sqrt{\pi}} \frac{d^{k-1}}{dz^{k-1}} \left(e^{-z^2}\right),\qquad k=1, 2, \dots
Translation Results
Semantic LaTeX Mathematica Translation Maple Translations
Yes No Yes

Semantic LaTeX

Translation
\erf@@{(z)}^{(k)} = \frac{2 (-1)^{k-1}}{\sqrt{\cpi}} \HermitepolyH{k-1}@{z} \expe^{-z^2} = \frac{2}{\sqrt{\cpi}} \deriv [{k-1}]{ }{z}(\expe^{-z^2}) , \qquad k = 1 , 2 , \dots
Expected (Gold Entry)
\erf@@{(z)}^{(k)} = \frac{2 (-1)^{k-1}}{\sqrt{\cpi}} \HermitepolyH{k-1}@{z} \expe^{-z^2} = \frac{2}{\sqrt{\cpi}} \deriv [{k-1}]{ }{z}(\expe^{-z^2}) , \qquad k = 1 , 2 , \dots


Mathematica

Translation
(Erf[z])^(k) == Divide[2*(- 1)^(k - 1),Sqrt[Pi]]*HermiteH[k - 1, z]*Exp[- (z)^(2)] == Divide[2,Sqrt[Pi]]*(D[(Exp[- (temp)^(2)]), {temp, k - 1}]/.temp-> z)
Expected (Gold Entry)
D[Erf[z], {z, k}] == Divide[2*(- 1)^(k - 1),Sqrt[Pi]]*HermiteH[k - 1, z]*Exp[- (z)^(2)] == Divide[2,Sqrt[Pi]]*D[Exp[- (z)^(2)], {z, k - 1}]


Maple

Translation
(erf(z))^(k) = (2*(- 1)^(k - 1))/(sqrt(Pi))*HermiteH(k - 1, z)*exp(- (z)^(2)) = (2)/(sqrt(Pi))*subs( temp=z, diff( (exp(- (temp)^(2))), temp$(k - 1) ) )
Expected (Gold Entry)
diff(erf(z), [z$\$$k]) = (2*(- 1)^(k - 1))/(sqrt(Pi))*HermiteH(k - 1, z)*exp(- (z)^(2)) = (2)/(sqrt(Pi))*diff(exp(- (z)^(2)), [z$\$$(k - 1)])