q-Hahn polynomials

From LaTeX CAS translator demo
Revision as of 07:31, 24 July 2019 by imported>OAbot (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, the q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by Qn(x;a,b,N;q)=3ϕ2[qnabqn+1xaqqN;q,q]

Orthogonality

Recurrence and difference relations

Rodrigues formula

Generating function

Relation to other polynomials

q-Hahn polynomials→ Quantum q-Krawtchouk polynomials

limaQn(qx;a;p,N|q)=Knqtm(qx;p,N;q)

q-Hahn polynomials→ Hahn polynomials

make the substitutionα=qα,β=qβ into definition of q-Hahn polynomials, and find the limit q→1, we obtain

3F2([n,α+β+n+1,x],[α+1,N],1),which is exactly Hahn polynomials.

References

  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Costas-Santos, R.S.; Sánchez-Lara, J.F. (September 2011). "Orthogonality of q-polynomials for non-standard parameters". Journal of Approximation Theory. 163 (9): 1246–1268. arXiv:1002.4657. doi:10.1016/j.jat.2011.04.005.