Continuous Hahn polynomials

From LaTeX CAS translator demo
Revision as of 17:52, 9 April 2019 by 131.251.254.201 (talk) (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by

pn(x;a,b,c,d)=in(a+c)n(a+d)nn!3F2(n,n+a+b+c+d1,a+ixa+c,a+d;1)

Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials Qn(x;a,b,c), and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.

Orthogonality

The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function

w(x)=Γ(a+ix)Γ(b+ix)Γ(cix)Γ(dix).

In particular, they satisfy the orthogonality relation[1][2][3]

12πΓ(a+ix)Γ(b+ix)Γ(cix)Γ(dix)pm(x;a,b,c,d)pn(x;a,b,c,d)dx=Γ(n+a+c)Γ(n+a+d)Γ(n+b+c)Γ(n+b+d)n!(2n+a+b+c+d1)Γ(n+a+b+c+d1)δnm

for (a)>0, (b)>0, (c)>0, (d)>0, c=a, d=b.

Recurrence and difference relations

The sequence of continuous Hahn polynomials satisfies the recurrence relation[4]

xpn(x)=pn+1(x)+i(An+Cn)pn(x)An1Cnpn1(x),
wherepn(x)=n!(n+a+b+c+d1)!(2n+a+b+c+d1)!pn(x;a,b,c,d),An=(n+a+b+c+d1)(n+a+c)(n+a+d)(2n+a+b+c+d1)(2n+a+b+c+d),andCn=n(n+b+c1)(n+b+d1)(2n+a+b+c+d2)(2n+a+b+c+d1).

Rodrigues formula

The continuous Hahn polynomials are given by the Rodrigues-like formula[5]

Γ(a+ix)Γ(b+ix)Γ(cix)Γ(dix)pn(x;a,b,c,d)=(1)nn!dndxn(Γ(a+n2+ix)Γ(b+n2+ix)Γ(c+n2ix)Γ(d+n2ix)).

Generating functions

The continuous Hahn polynomials have the following generating function:[6]

n=0Γ(n+a+b+c+d)Γ(a+c+1)Γ(a+d+1)Γ(a+b+c+d)Γ(n+a+c+1)Γ(n+a+d+1)(it)npn(x;a,b,c,d)=(1t)1abcd3F2(12(a+b+c+d1),12(a+b+c+d),a+ixa+c,a+d;4t(1t)2).

A second, distinct generating function is given by

n=0Γ(a+c+1)Γ(b+d+1)Γ(n+a+c+1)Γ(n+b+d+1)tnpn(x;a,b,c,d)=1F1(a+ixa+c;it)1F1(dixb+d;it).

Relation to other polynomials

  • The Wilson polynomials are a generalization of the continuous Hahn polynomials.
  • The Bateman polynomials Fn(x) are related to the special case a=b=c=d=1/2 of the continuous Hahn polynomials by
pn(x;12,12,12,12)=inn!Fn(2ix).
  • The Jacobi polynomials Pn(α,β)(x) can be obtained as a limiting case of the continuous Hahn polynomials:[7]
Pn(α,β)=limttnpn(12xt;12(α+1it),12(β+1+it),12(α+1+it),12(β+1it)).

References

  1. Koekoek, Lesky, & Swarttouw (2010), p. 200.
  2. Askey, R. (1985), "Continuous Hahn polynomials", J. Phys. A: Math. Gen. 18: pp. L1017-L1019.
  3. Andrews, Askey, & Roy (1999), p. 333.
  4. Koekoek, Lesky, & Swarttouw (2010), p. 201.
  5. Koekoek, Lesky, & Swarttouw (2010), p. 202.
  6. Koekoek, Lesky, & Swarttouw (2010), p. 202.
  7. Koekoek, Lesky, & Swarttouw (2010), p. 203.
  • Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions, Encyclopedia of Mathematics and its Applications 71, Cambridge: Cambridge University Press, ISBN 978-0-521-62321-6