Modular lambda function

From LaTeX CAS translator demo
Revision as of 00:00, 9 September 2019 by imported>InternetArchiveBot (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, the elliptic modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve /1,τ, where the map is defined as the quotient by the [−1] involution.

The q-expansion, where q=eπiτ is the nome, is given by:

λ(τ)=16q128q2+704q33072q4+11488q538400q6+. OEISA115977

By symmetrizing the lambda function under the canonical action of the symmetric group S3 on X(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group SL2(), and it is in fact Klein's modular j-invariant.

Modular properties

The function λ(τ) is invariant under the group generated by[1]

ττ+2;ττ12τ.

The generators of the modular group act by[2]

ττ+1:λλλ1;
τ1τ:λ1λ.

Consequently, the action of the modular group on λ(τ) is that of the anharmonic group, giving the six values of the cross-ratio:[3]

{λ,11λ,λ1λ,1λ,λλ1,1λ}.

Other appearances

Other elliptic functions

It is the square of the Jacobi modulus,[4] that is, λ(τ)=k2(τ). In terms of the Dedekind eta function η(τ) and theta functions,[4]

λ(τ)=(2η(τ2)η2(2τ)η3(τ))8=16(η(τ/2)η(2τ))8+16=θ24(0,τ)θ34(0,τ)

and,

1(λ(τ))1/4(λ(τ))1/4=12(η(τ4)η(τ))4=2θ42(0,τ2)θ22(0,τ2)

where[5] for the nome q=eπiτ,

θ2(0,τ)=n=q(n+12)2
θ3(0,τ)=n=qn2
θ4(0,τ)=n=(1)nqn2

In terms of the half-periods of Weierstrass's elliptic functions, let [ω1,ω2] be a fundamental pair of periods with τ=ω2ω1.

e1=(ω12),e2=(ω22),e3=(ω1+ω22)

we have[4]

λ=e3e2e1e2.

Since the three half-period values are distinct, this shows that λ does not take the value 0 or 1.[4]

The relation to the j-invariant is[6][7]

j(τ)=256(1λ(1λ))3(λ(1λ))2=256(1λ+λ2)3λ2(1λ)2.

which is the j-invariant of the elliptic curve of Legendre form y2=x(x1)(xλ)

Little Picard theorem

The lambda function is used in the original proof of the Little Picard theorem, that an entire non-constant function on the complex plane cannot omit more than one value. This theorem was proved by Picard in 1879.[8] Suppose if possible that f is entire and does not take the values 0 and 1. Since λ is holomorphic, it has a local holomorphic inverse ω defined away from 0,1,∞. Consider the function z → ω(f(z)). By the Monodromy theorem this is holomorphic and maps the complex plane C to the upper half plane. From this it is easy to construct a holomorphic function from C to the unit disc, which by Liouville's theorem must be constant.[9]

Moonshine

The function 16λ(2τ)8 is the normalized Hauptmodul for the group Γ0(4), and its q-expansion q1+20q62q3+, OEISA007248 where q=e2πiτ, is the graded character of any element in conjugacy class 4C of the monster group acting on the monster vertex algebra.

Footnotes

  1. Chandrasekharan (1985) p.115
  2. Chandrasekharan (1985) p.109
  3. Chandrasekharan (1985) p.110
  4. 4.0 4.1 4.2 4.3 Chandrasekharan (1985) p.108
  5. Chandrasekharan (1985) p.63
  6. Chandrasekharan (1985) p.117
  7. Rankin (1977) pp.226–228
  8. Chandrasekharan (1985) p.121
  9. Chandrasekharan (1985) p.118

References

  • Abramowitz, Milton; Stegun, Irene A., eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, ISBN 978-0-486-61272-0, Zbl 0543.33001
  • Chandrasekharan, K. (1985), Elliptic Functions, Grundlehren der mathematischen Wissenschaften, 281, Springer-Verlag, pp. 108–121, ISBN 3-540-15295-4, Zbl 0575.33001
  • Conway, John Horton; Norton, Simon (1979), "Monstrous moonshine", Bulletin of the London Mathematical Society, 11 (3): 308–339, doi:10.1112/blms/11.3.308, MR 0554399, Zbl 0424.20010
  • Rankin, Robert A. (1977), Modular Forms and Functions, Cambridge University Press, ISBN 0-521-21212-X, Zbl 0376.10020
  • Reinhardt, W. P.; Walker, P. L. (2010), "Elliptic Modular Function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248