Struve function

From LaTeX CAS translator demo
Revision as of 09:37, 12 September 2020 by imported>Citation bot (Redirected page to wmf:Privacy policy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Graph of Hn(x) for n[0,1,2,3,4,5]

In mathematics, the Struve functions Hα(x), are solutions y(x) of the non-homogeneous Bessel's differential equation:

x2d2ydx2+xdydx+(x2α2)y=4(x2)α+1πΓ(α+12)

introduced by Hermann Struve (1882). The complex number α is the order of the Struve function, and is often an integer.

And further defined its second-kind version Kα(x) as Kα(x)=Hα(x)Yα(x).

The modified Struve functions Lα(x) are equal to ieiαπ / 2Hα(ix), are solutions y(x) of the non-homogeneous Bessel's differential equation:

x2d2ydx2+xdydx(x2+α2)y=4(x2)α+1πΓ(α+12)

And further defined its second-kind version Mα(x) as Mα(x)=Lα(x)Iα(x).

Definitions

Since this is a non-homogeneous equation, solutions can be constructed from a single particular solution by adding the solutions of the homogeneous problem. In this case, the homogeneous solutions are the Bessel functions, and the particular solution may be chosen as the corresponding Struve function.

Power series expansion

Struve functions, denoted as Hα(z) have the power series form

Hα(z)=m=0(1)mΓ(m+32)Γ(m+α+32)(z2)2m+α+1,

where Γ(z) is the gamma function.

The modified Struve functions, denoted Lν(z), have the following power series form

Lν(z)=(z2)ν+1k=01Γ(32+k)Γ(32+k+ν)(z2)2k.

Integral form

Another definition of the Struve function, for values of α satisfying Re(α) > − 1/2, is possible expressing in term of the Poisson’s integral representation:

Hα(x)=2(x2)απΓ(α+12)01(1t2)α12sinxtdt=2(x2)απΓ(α+12)0π2sin(xcosτ)sin2ατdτ=2(x2)απΓ(α+12)0π2sin(xsinτ)cos2ατdτ
Kα(x)=2(x2)απΓ(α+12)0(1+t2)α12extdt=2(x2)απΓ(α+12)0exsinhτcosh2ατdτ
Lα(x)=2(x2)απΓ(α+12)01(1t2)α12sinhxtdt=2(x2)απΓ(α+12)0π2sinh(xcosτ)sin2ατdτ=2(x2)απΓ(α+12)0π2sinh(xsinτ)cos2ατdτ
Mα(x)=2(x2)απΓ(α+12)01(1t2)α12extdt=2(x2)απΓ(α+12)0π2excosτsin2ατdτ=2(x2)απΓ(α+12)0π2exsinτcos2ατdτ

Asymptotic forms

For small x, the power series expansion is given above.

For large x, one obtains:

Hα(x)Yα(x)=(x2)α1πΓ(α+12)+O((x2)α3),

where Yα(x) is the Neumann function.

Properties

The Struve functions satisfy the following recurrence relations:

Hα1(x)+Hα+1(x)=2αxHα(x)+(x2)απΓ(α+32),Hα1(x)Hα+1(x)=2ddx(Hα(x))(x2)απΓ(α+32).

Relation to other functions

Struve functions of integer order can be expressed in terms of Weber functions En and vice versa: if n is a non-negative integer then

En(z)=1πk=0n12Γ(k+12)(z2)n2k1Γ(nk+12)Hn(z),En(z)=(1)n+1πk=0n12Γ(nk12)(z2)n+2k+1Γ(k+32)Hn(z).

Struve functions of order n + 1/2 where n is an integer can be expressed in terms of elementary functions. In particular if n is a non-negative integer then

Hn12(z)=(1)nJn+12(z),

where the right hand side is a spherical Bessel function.

Struve functions (of any order) can be expressed in terms of the generalized hypergeometric function 1F2 (which is not the Gauss hypergeometric function 2F1):

Hα(z)=zα+12απΓ(α+32)1F2(1,32,α+32,z24).

References

  • R. M. Aarts and Augustus J. E. M. Janssen (2003). "Approximation of the Struve function H1 occurring in impedance calculations". J. Acoust. Soc. Am. 113 (5): 2635–2637. Bibcode:2003ASAJ..113.2635A. doi:10.1121/1.1564019. PMID 12765381.
  • R. M. Aarts and Augustus J. E. M. Janssen (2016). "Efficient approximation of the Struve functions Hn occurring in the calculation of sound radiation quantities". J. Acoust. Soc. Am. 140 (6): 4154–4160. Bibcode:2016ASAJ..140.4154A. doi:10.1121/1.4968792. PMID 28040027.
  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 12". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 496. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Ivanov, A. B. (2001) [1994], "Struve function", Encyclopedia of Mathematics, EMS Press
  • Paris, R. B. (2010), "Struve function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Struve, H. (1882). "Beitrag zur Theorie der Diffraction an Fernröhren". Annalen der Physik und Chemie. 17 (13): 1008–1016. Bibcode:1882AnP...253.1008S. doi:10.1002/andp.18822531319.

External links