Gold 27: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
|  Redirected page to wmf:Privacy policy | 
| (No difference) | 
Latest revision as of 13:35, 1 September 2021
Incomplete gamma function
- Gold ID
- 27
- Link
- https://sigir21.wmflabs.org/wiki/Incomplete_gamma_function#math.77.118
- Formula
- TeX Source
- \int_{-\infty}^\infty \frac {\gamma\left(\frac s 2, z^2 \pi \right)} {(z^2 \pi)^\frac s 2} e^{-2 \pi i k z} \mathrm d z = \frac {\Gamma\left(\frac {1-s} 2, k^2 \pi \right)} {(k^2 \pi)^\frac {1-s} 2}
| Translation Results | ||
|---|---|---|
| Semantic LaTeX | Mathematica Translation | Maple Translations | 
|   |   |   | 
Semantic LaTeX
- Translation
- \int_{-\infty}^\infty \frac{\incgamma@{\frac s 2}{z^2 \cpi}}{(z^2 \cpi)^\frac s 2} \expe^{- 2 \cpi \iunit k z} \diff{z} = \frac{\incGamma@{\frac {1-s} 2}{k^2 \cpi}}{(k^2 \cpi)^\frac {1-s} 2}
- Expected (Gold Entry)
- \int_{-\infty}^\infty \frac{\incgamma@{\frac s 2}{z^2 \cpi}}{(z^2 \cpi)^\frac s 2} \expe^{- 2 \cpi \iunit k z} \diff{z} = \frac{\incGamma@{\frac {1-s} 2}{k^2 \cpi}}{(k^2 \cpi)^\frac {1-s} 2}}
Mathematica
- Translation
- Integrate[Divide[Gamma[Divide[s,2], 0, (z)^(2)* Pi],((z)^(2)* Pi)^(Divide[s,2])]*Exp[- 2*Pi*I*k*z], {z, - Infinity, Infinity}, GenerateConditions->None] == Divide[Gamma[Divide[1 - s,2], (k)^(2)* Pi],((k)^(2)* Pi)^(Divide[1 - s,2])]
- Expected (Gold Entry)
- Integrate[Divide[Gamma[Divide[s,2], 0, (z)^(2)* Pi],((z)^(2)* Pi)^(Divide[s,2])]*Exp[- 2*Pi*I*k*z], {z, - Infinity, Infinity}] == Divide[Gamma[Divide[1 - s,2], (k)^(2)* Pi],((k)^(2)* Pi)^(Divide[1 - s,2])]
Maple
- Translation
- int((GAMMA((s)/(2))-GAMMA((s)/(2), (z)^(2)* Pi))/(((z)^(2)* Pi)^((s)/(2)))*exp(- 2*Pi*I*k*z), z = - infinity..infinity) = (GAMMA((1 - s)/(2), (k)^(2)* Pi))/(((k)^(2)* Pi)^((1 - s)/(2)))
- Expected (Gold Entry)
- int((GAMMA((s)/(2))-GAMMA((s)/(2), (z)^(2)* Pi))/(((z)^(2)* Pi)^((s)/(2)))*exp(- 2*Pi*I*k*z), z = - infinity..infinity) = (GAMMA((1 - s)/(2), (k)^(2)* Pi))/(((k)^(2)* Pi)^((1 - s)/(2)))